
LLMs + Program Synthesis

Aalok Thakkar

A Journey



Program Synthesis



Program Synthesis
Declarative Knowledge Imperative Knowledge

∀x ∈ ℝ≥0 . ∃y ∈ ℝ≥0 . (y2 = x) yn+1 =
y2

n + x
2yn



Program Synthesis
Declarative Knowledge Imperative Knowledge

∀x ∈ ℝ≥0 . ∃y ∈ ℝ≥0 . (y2 = x) yn+1 =
y2

n + x
2yn

User Intent Implementation
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More Computing Power 

Mature Software Analysis and Verification Tools 

Better Human-Computer Interfaces 

Data Mining tools for Code Repositories



Programming by Example

Desired program P: A bit-vector transformation that resets the 
rightmost substring of contiguous 1s to 0s  

1. P should be constructed from standard bit-vector operations 
|, &, ~, +, -, <<, >>, 0, 1 …

2. P can be specified using examples: 

00101  00100

01010  01000

10110  10000

→

→

→
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Desired program P: A bit-vector transformation that resets the 
rightmost substring of contiguous 1s to 0s  

1. P should be constructed from standard bit-vector operations 
|, &, ~, +, -, <<, >>, 0, 1 …

2. P can be specified using examples: 
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x & (1 + (x | (x - 1)) 
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Spreadsheets Using Input-Output Examples
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Semantic Spec. Implementation

Syntactic Spec.

Synthesizer



Syntax-Guided Synthesis

Verification OracleSearch Algorithm

candidate expression

counter-example

successfail



Combinatorial Sketching for Finite Programs
Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Vijay Saraswat∗, Sanjit Seshia 

ASPLOS 2006

Verification OracleSearch Algorithm

candidate expression

counter-example

successfail



Combinatorial Sketching for Finite Programs
Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Vijay Saraswat∗, Sanjit Seshia 

ASPLOS 2006

Verification OracleSearch Algorithm

candidate expression

counter-example

successfail

(x ≤ f(x, y)) ∧ (y ≤ f(x, y)) ∧ (f(x, y) = x ∨ f(x, y) = y)



Initial Learning Strategies:

Enumerative Search (searching with pruning): Udupa et. al. (PLDI 2013) 

Symbolic Search (solving constraints): Gulwani et. al. (PLDI 2011) 

   Stochastic (probablistic walk): Schkufza et. al. (ASPLOS 2013) 
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Accelerating Search-Based Program 
Synthesis using Learned Probabilistic Models

Woosuk Lee, Kihong Heo, Rajeev Alur, Mayur Naik 

PLDI 2018

Verification Oracle

1. Learn a Probabilistic Higher-Order 
Grammar (PHOG) to bias the search 

2. Deal with operators at the category level to 
avoid overfitting  

3. Use A* like search for the program 

candidate expression

counter-example

success

fail
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1. Correctness on IO Examples 

2. Variable Name Transformations 

3. Argument Transformations 

4. AST-to-AST Transformations 

5. Learning from User Feedback



Guiding Enumerative Program Synthesis 
with Large Language Models

Yixuan Li, Julian Parsert, and Elizabeth Polgreen 

CAV 2024
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Guiding Enumerative Program Synthesis 
with Large Language Models

Step 1: Can off-the-shelf LLMs solve program synthesis? 

They craft a library of prompts that solve roughly 50% of the SyGuS benchmarks. 

In the cases where the LLM returns incorrect solutions, the correct solutions are most 
often in the vicinity of the incorrect solutions.



Guiding Enumerative Program Synthesis 
with Large Language Models

Step 2: Bias counter-example guided inductive synthesis 

Use the incorrect programs to create a probablistic CFG and use it to guide an 

enumerative synthesizer within a CEGIS loop.



Guiding Enumerative Program Synthesis 
with Large Language Models

pCFG-synth



Stand-alone LLM

1. Use off-the-shelf LLM (GPT-3.5-turbo) without fine tuning 

2. Rename any functions and variables to avoid generation based on name 

3. Ask LLM to generate first in Lisp (6% better) or Python than SMT-LIB 

4. Use emotional prompts (8% better) 

5. Then convert from Lisp (or Python) to SMT-LIB
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f(x, y, z) = if (x ≥ y) then  (if (x ≥ z) then x else z)  then  ((y ≥ z) then y else z)





Method BV (384) LIA (87) INV (138) Total (609)

Enumerator 142.7 25.0 21.0 188.7 (31.0%)

CVC5 292.0 43.0 80.0 415.0 (68.1%)

LLM Only 137.0 54.0 112.0 303.0 (49.8%)

Results

average of 3 runs; timeout 600s



If the LLM does not generate the correct program… 

We want to infer a Weighted CFG that characterises the 
neighbourhood of the incorrect program.  
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Method 1: Top-down Search
+ Hueristics for Pruning



Results

Method BV (384) LIA (87) INV (138) Total (609)

CVC5 292.0 43.0 80.0 415.0 (68.1%)

LLM Only 137.0 54.0 112.0 303.0 (49.8%)

e-pCFG-synth 196.0 24.0 100.5 245.4 (40.3%)

LLM ∪ e-pCFG-synth 255.0 64.0 117.7 436.7 (71.7%)

average of 3 runs; timeout 600s



Method 2: Weighted A* Search
Based on W. Lee et. al. (PLDI 2018) 

Consider  which computes the cost of the path so far, and 
 which estimates the cost to extend the path to a goal node.

c(x)
g(x)

Minimize c(x) + g(x)



Results

Method BV (384) LIA (87) INV (138) Total (609)

CVC5 292.0 43.0 80.0 415.0 (68.1%)

LLM Only 137.0 54.0 112.0 303.0 (49.8%)

e-pCFG-synth 196.0 24.0 100.5 245.4 (40.3%)

LLM ∪ e-pCFG-synth 255.0 64.0 117.7 436.7 (71.7%)

A* with pCFG-synth 262.0 35.0 25.0 322 (52.9%)

LLM ∪ A*-pCFG-synth 305.0 65.0 118.0 488.0 (80.1%)

average of 3 runs; timeout 600s
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Guiding Enumerative Program Synthesis 
with Large Language Models

iLLM-synth

Motivated by Solar-Lezama et. al. (ASPLOS 2006) 





1. Initialize weight of each rule.  

2. Use the LLM-generated helper functions to augment the grammar appropriately. 

3. The response parser also updates the weights of all existing rules in the grammar as before.



iLLM-synth

Weighted A* Search
Based on W. Lee et. al. (PLDI 2018) 



A*-iLLM-synth

Weighted A* Search
Based on W. Lee et. al. (PLDI 2018) 

1. Every time we use the LLM, there is a cost of API 
call + updating the grammar and   for A*  

2. Call LLM after every n steps in the A* search. 

g(x)



Results

Method BV (384) LIA (87) INV (138) Total (609)

CVC5 292.0 43.0 80.0 415.0 (68.1%)

LLM Only 137.0 54.0 112.0 303.0 (49.8%)

LLM ∪ e-pCFG-synth 255.0 64.0 117.7 436.7 (71.7%)

LLM ∪ A*-pCFG-synth 305.0 65.0 118.0 488.0 (80.1%)

A*-iLLM-synth 272.3 68.3 67.3 408.0 (67.0%)

average of 3 runs; timeout 600s



Evaluation

1. A*-iLLM-synth is comparable to CVC5 without custom optimizations 

2. LLM ∪ A*-pCFG-synth is better perhaps because of prompting 
techniques or the speed of heuristic search over language models 

3. Failure Modes: Misunderstandings due to complex constraints, simple 
errors (applying non-commutative operators to operands in the wrong 
order, concatenating bit-vectors in the wrong order), hallucinating 
operations. 

4. Benchmarks uniquely solved by the LLM is 4.7x the length of a 
solution for benchmarks uniquely solved by CVC5. Solutions found by 
A∗ contain fewer than 3 operators, but A*-iLLM-synth finds solutions 
with greater than 20 operators.



Limitations

1. LLM Training Data: The SyGuS problems are publicly available. 

2. Reproducibility: LLMs behave non-deterministically in a way 

that cannot be seeded. Also dependent on the LLM. 

3. Hyperparameters: The performance is very sensitive to 

parameter tuning. 

4. PBE: LLMs cannot provide guidance to the enumerator for 

Programming-by-Examples.  It tends to provide a solution in the 

form of a large case split over the input examples. 


