
LLMs + Program Synthesis

Aalok Thakkar

A Journey

Program Synthesis

Program Synthesis
Declarative Knowledge Imperative Knowledge

∀x ∈ ℝ≥0 . ∃y ∈ ℝ≥0 . (y2 = x) yn+1 =
y2

n + x
2yn

Program Synthesis
Declarative Knowledge Imperative Knowledge

∀x ∈ ℝ≥0 . ∃y ∈ ℝ≥0 . (y2 = x) yn+1 =
y2

n + x
2yn

User Intent Implementation

Synthesis: Dreams => Programs
Zohar Manna and Richard Waldinger

IEEE Transactions on Software Engineering, 1979

Can Programming Be Liberated, Period?
David Harel

IEEE, 2008

Can Programming Be Liberated, Period?
David Harel

IEEE, 2008

More Computing Power

Mature Software Analysis and Verification Tools

Better Human-Computer Interfaces

Data Mining tools for Code Repositories

Programming by Example

Desired program P: A bit-vector transformation that resets the
rightmost substring of contiguous 1s to 0s

1. P should be constructed from standard bit-vector operations
|, &, ~, +, -, <<, >>, 0, 1 …

2. P can be specified using examples:

00101 00100

01010 01000

10110 10000

→

→

→

Programming by Example

Desired program P: A bit-vector transformation that resets the
rightmost substring of contiguous 1s to 0s

1. P should be constructed from standard bit-vector operations
|, &, ~, +, -, <<, >>, 0, 1 …

2. P can be specified using examples:

00101 00100

01010 01000

10110 10000

x & (1 + (x | (x - 1))

→

→

→

Automating String Processing in
Spreadsheets Using Input-Output Examples

Sumit Gulwani

POPL 2011

Syntax-Guided Synthesis
Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman,

Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, Abhishek Udupa

FMCAD 2013

Specification ImplementationSynthesizer

Syntax-Guided Synthesis
Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman,

Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, Abhishek Udupa

FMCAD 2013

Semantic Spec. Implementation

Syntactic Spec.

Synthesizer

Syntax-Guided Synthesis

Verification OracleSearch Algorithm

candidate expression

counter-example

successfail

Combinatorial Sketching for Finite Programs
Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Vijay Saraswat∗, Sanjit Seshia

ASPLOS 2006

Verification OracleSearch Algorithm

candidate expression

counter-example

successfail

Combinatorial Sketching for Finite Programs
Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Vijay Saraswat∗, Sanjit Seshia

ASPLOS 2006

Verification OracleSearch Algorithm

candidate expression

counter-example

successfail

(x ≤ f(x, y)) ∧ (y ≤ f(x, y)) ∧ (f(x, y) = x ∨ f(x, y) = y)

Initial Learning Strategies:

Enumerative Search (searching with pruning): Udupa et. al. (PLDI 2013)

Symbolic Search (solving constraints): Gulwani et. al. (PLDI 2011)

 Stochastic (probablistic walk): Schkufza et. al. (ASPLOS 2013)

Initial Learning Strategies:

Enumerative Search (searching with pruning): Udupa et. al. (PLDI 2013)

Symbolic Search (solving constraints): Gulwani et. al. (PLDI 2011)

 Stochastic (probablistic walk): Schkufza et. al. (ASPLOS 2013)

Accelerating Search-Based Program
Synthesis using Learned Probabilistic Models

Woosuk Lee, Kihong Heo, Rajeev Alur, Mayur Naik

PLDI 2018

Verification Oracle

1. Learn a Probabilistic Higher-Order
Grammar (PHOG) to bias the search

2. Deal with operators at the category level to
avoid overfitting

3. Use A* like search for the program

candidate expression

counter-example

success

fail

Example-Guided Synthesis
of Relational Queries

Aalok Thakkar, Aaditya Naik, Nathaniel Sands, Rajeev Alur,
Mayur Naik, Mukund Raghothaman

PLDI 2021

Verification Oracle
1. Leverage the structure of the examples
2. Build a context co-occurrence graph
3. Enumerate subgraphs

candidate expression

counter-example

success

fail

Example-Guided Synthesis
of Relational Queries

Aalok Thakkar, Aaditya Naik, Nathaniel Sands, Rajeev Alur,
Mayur Naik, Mukund Raghothaman

PLDI 2021

Verification Oracle
1. Leverage the structure of the examples
2. Build a context co-occurrence graph
3. Enumerate subgraphs

candidate expression

counter-example

success

fail

can LLMs solve all of these?

can LLMs solve all of these?

GPT-4o

Jigsaw: Large Language Models meet
Program Synthesis

Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natarajan, Suresh Parthasarathy,
Sriram Rajamani, Rahul Sharma

ICSE 2022

Jigsaw: Large Language Models meet
Program Synthesis

Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natarajan, Suresh Parthasarathy,
Sriram Rajamani, Rahul Sharma

ICSE 2022

Jigsaw: Large Language Models meet
Program Synthesis

Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natarajan, Suresh Parthasarathy,
Sriram Rajamani, Rahul Sharma

ICSE 2022

1. Correctness on IO Examples

2. Variable Name Transformations

3. Argument Transformations

4. AST-to-AST Transformations

5. Learning from User Feedback

Guiding Enumerative Program Synthesis
with Large Language Models

Yixuan Li, Julian Parsert, and Elizabeth Polgreen

CAV 2024

Guiding Enumerative Program Synthesis
with Large Language Models

Step 1: Can off-the-shelf LLMs solve program synthesis?

Guiding Enumerative Program Synthesis
with Large Language Models

Step 1: Can off-the-shelf LLMs solve program synthesis?

They craft a library of prompts that solve roughly 50% of the SyGuS benchmarks.

Guiding Enumerative Program Synthesis
with Large Language Models

Step 1: Can off-the-shelf LLMs solve program synthesis?

They craft a library of prompts that solve roughly 50% of the SyGuS benchmarks.

In the cases where the LLM returns incorrect solutions, the correct solutions are most
often in the vicinity of the incorrect solutions.

Guiding Enumerative Program Synthesis
with Large Language Models

Step 2: Bias counter-example guided inductive synthesis

Use the incorrect programs to create a probablistic CFG and use it to guide an

enumerative synthesizer within a CEGIS loop.

Guiding Enumerative Program Synthesis
with Large Language Models

pCFG-synth

Stand-alone LLM

1. Use off-the-shelf LLM (GPT-3.5-turbo) without fine tuning

2. Rename any functions and variables to avoid generation based on name

3. Ask LLM to generate first in Lisp (6% better) or Python than SMT-LIB

4. Use emotional prompts (8% better)

5. Then convert from Lisp (or Python) to SMT-LIB

Stand-alone LLM

1. Use off-the-shelf LLM (GPT-3.5-turbo) without fine tuning

2. Rename any functions and variables to avoid generation based on name

3. Ask LLM to generate first in Lisp (6% better) or Python than SMT-LIB

4. Use emotional prompts (8% better)

5. Then convert from Lisp (or Python) to SMT-LIB

f(x, y, z) = if (x ≥ y) then (if (x ≥ z) then x else z) then ((y ≥ z) then y else z)

Method BV (384) LIA (87) INV (138) Total (609)

Enumerator 142.7 25.0 21.0 188.7 (31.0%)

CVC5 292.0 43.0 80.0 415.0 (68.1%)

LLM Only 137.0 54.0 112.0 303.0 (49.8%)

Results

average of 3 runs; timeout 600s

If the LLM does not generate the correct program…

We want to infer a Weighted CFG that characterises the
neighbourhood of the incorrect program.

If the LLM does not generate the correct program…

We want to infer a Weighted CFG that characterises the
neighbourhood of the incorrect program.

pCFG-synth

If the LLM does not generate the correct program…

We want to infer a Weighted CFG that characterises the
neighbourhood of the incorrect program.

w[ri] = ∑
p

countr(p)

If the LLM does not generate the correct program…

We want to infer a Weighted CFG that characterises the
neighbourhood of the incorrect program.

w[ri] = ∑
p

countr(p)

 w[r1] = 3 w[r2] = 3 w[r3] = 3 w[r4] = 4 w[r5] = 3

 P(r1) =
3

11
P(r2) =

3
11

P(r3) =
3

11
P(r4) =

4
11

P(r5) = 1

 P(r1) =
3

11
P(r2) =

3
11

P(r3) =
3

11
P(r4) =

4
11

P(r5) = 1

Method 1: Top-down Search
+ Hueristics for Pruning

Results

Method BV (384) LIA (87) INV (138) Total (609)

CVC5 292.0 43.0 80.0 415.0 (68.1%)

LLM Only 137.0 54.0 112.0 303.0 (49.8%)

e-pCFG-synth 196.0 24.0 100.5 245.4 (40.3%)

LLM ∪ e-pCFG-synth 255.0 64.0 117.7 436.7 (71.7%)

average of 3 runs; timeout 600s

Method 2: Weighted A* Search
Based on W. Lee et. al. (PLDI 2018)

Consider which computes the cost of the path so far, and
 which estimates the cost to extend the path to a goal node.

c(x)
g(x)

Minimize c(x) + g(x)

Results

Method BV (384) LIA (87) INV (138) Total (609)

CVC5 292.0 43.0 80.0 415.0 (68.1%)

LLM Only 137.0 54.0 112.0 303.0 (49.8%)

e-pCFG-synth 196.0 24.0 100.5 245.4 (40.3%)

LLM ∪ e-pCFG-synth 255.0 64.0 117.7 436.7 (71.7%)

A* with pCFG-synth 262.0 35.0 25.0 322 (52.9%)

LLM ∪ A*-pCFG-synth 305.0 65.0 118.0 488.0 (80.1%)

average of 3 runs; timeout 600s

Guiding Enumerative Program Synthesis
with Large Language Models

iLLM-synth

Guiding Enumerative Program Synthesis
with Large Language Models

iLLM-synth

Motivated by Solar-Lezama et. al. (ASPLOS 2006)

1. Initialize weight of each rule.

2. Use the LLM-generated helper functions to augment the grammar appropriately.

3. The response parser also updates the weights of all existing rules in the grammar as before.

iLLM-synth

Weighted A* Search
Based on W. Lee et. al. (PLDI 2018)

A*-iLLM-synth

Weighted A* Search
Based on W. Lee et. al. (PLDI 2018)

1. Every time we use the LLM, there is a cost of API
call + updating the grammar and for A*

2. Call LLM after every n steps in the A* search.

g(x)

Results

Method BV (384) LIA (87) INV (138) Total (609)

CVC5 292.0 43.0 80.0 415.0 (68.1%)

LLM Only 137.0 54.0 112.0 303.0 (49.8%)

LLM ∪ e-pCFG-synth 255.0 64.0 117.7 436.7 (71.7%)

LLM ∪ A*-pCFG-synth 305.0 65.0 118.0 488.0 (80.1%)

A*-iLLM-synth 272.3 68.3 67.3 408.0 (67.0%)

average of 3 runs; timeout 600s

Evaluation

1. A*-iLLM-synth is comparable to CVC5 without custom optimizations

2. LLM ∪ A*-pCFG-synth is better perhaps because of prompting
techniques or the speed of heuristic search over language models

3. Failure Modes: Misunderstandings due to complex constraints, simple
errors (applying non-commutative operators to operands in the wrong
order, concatenating bit-vectors in the wrong order), hallucinating
operations.

4. Benchmarks uniquely solved by the LLM is 4.7x the length of a
solution for benchmarks uniquely solved by CVC5. Solutions found by
A∗ contain fewer than 3 operators, but A*-iLLM-synth finds solutions
with greater than 20 operators.

Limitations

1. LLM Training Data: The SyGuS problems are publicly available.

2. Reproducibility: LLMs behave non-deterministically in a way

that cannot be seeded. Also dependent on the LLM.

3. Hyperparameters: The performance is very sensitive to

parameter tuning.

4. PBE: LLMs cannot provide guidance to the enumerator for

Programming-by-Examples. It tends to provide a solution in the

form of a large case split over the input examples.

