The Art of WetHrg Righting Code

Aalok Thakkar Ashoka University

[ITT Delni eminar Series
Fepruary 14, 2025

Poly Network Hack
August 10, 2021

()

PolyNetwork

611 million USD or 4600 crores INR

Cross-chain transaction to ETH:
~method: 1121318093
~contract: EthCrossChainData

\ Ontology
' Chain
Attacker
Poly
Network < -
) Y,
Is owner of...
N EthCrossChainManager N

Call method 0x41973cd9 (putCurEpochConPubKeyBytes)
to replace Keeper's public keys with attacker controlled key

S > EthCrossChainData

T'herac-25 Radiation Therapy Machine

Administered radiation
doses hundreds of times
nigher than intended.

Race Conditions!

Mars Climate Orpiter (1999)

PYEE Loy el s 2 T W

o

"MeTRIC, ENGLKH WHATEVER..

Remember the Mars Climate Orbiter incident from 1999?

Boeing /3/ MAX

Direct Costs: US$20 billion
Indirect Costs: US$60 hillion
Deaths: 346

oyota
Unintended
AcCceleration

5.2 million vehicles
US$2 2 billion in lawsuits
37/ deaths

How do you detect bugs?
How do avoid vulnerabilities?

How do ensure security?

Read Your Code Caret

I)

Read Your Code Care:

I)

Read Your Code Carel

e

Ingecure!

lesting”

lesting”

126, 1, 2, 300, — 3]

!

Array Sorting

!

-3, 1, 2, 26, 300]

[esting”

126, 1, 2, 300, — 3]

'

'
[-3, 1, 2, 26, 300] g[lghf[g

Better

ruzz lesting

[192] [269 19 29 3009 T 3] [Oa Oa T 79 T 89 7]

!

Array Sorting

'

[192] [_39 19 29 269 300] [_79 T 89 09 09 7]

rUzZZ

[1,2]

[1,2]

esting

126, 1, 2, 300, — 3]

'

'

[—3, 1, 2, 26, 300]

[Oa Oa _79 o 89 7]

[_79 T 89 Oa Oa 7]

Much
Better!

“Program testing can be used to
show the presence of bugs, but
never to show their absence!”

— Edsger W. Dijkstra

How to prove the

i Correctneqg
apsence ol bugs?

(Buaranteea!

How can one check a routine in the sense of making
sure that it is right? In order that the man who checks
may not have too difficult a task, the programmer
should make a number of definite assertions which
can be checked individually, and from which the
correctness of the whole program easily follows.

- Alan Turing, 1949

[192] [269 19 29 3009 o 3] [Oa Oa T 79 T 89 7]

'

Array Sorting

'

[192] [_33 19 29 269 300] [_79 T 89 09 09 7]

selectionSort(int Al], n) {

1 =0:
while i<n-1){
V=1
j=1+1;
while (j < n) {
it (Alj] < Alv])
\ =
|++
}
swap(Ali], Alv])
++:
}
return A;

Pre-condition: | have an array!
selectionSort(int Al], n) {

1 =0:
while i<n-1){
V=1
j=i+7;
while (j < n) {
it (Alj] < Alv])
\ =
|++
}
swap(Ali], Alv])
++:
}
return A;

j

Post-condition: | want a sorted array!

Pre-condition: | have an array!
selectionSort(int Al], n) {

1 =0:
while i<n-1){
V=1
j=1+1;
while (j < n) {
it (Alj] < Alv])
\ =
|++
}
swap(Ali], Alv])
++:
}
return A;

j

Post-condition: | want a sorted array! gpeciﬁcaﬁon,

Pre-condition: A : t", 1t : (<)
selectionSort(int Al], n) {

1 =0:
while i<n-1){
V=1
j=1+1;
while (j < n) {
it (Alj] < Alv])
\ =
|++
}
swap(Ali], Alv])
++:
}
return A;

}
Post-condition: Vi € [n].Vj € [n]. ((i <j) - (A[i] < A[j]))

Pre-condition: A : t", 1t : (<)
selectionSort(int Al], n) {

1 =0:
while i<n-1){
V=1
j=1+1;
while (j < n) {
it (Alj] < Alv])
\ =
|++
}
swap(Ali], Alv])
++:
}
return A;

}
Post-condition: Vi € [n].V] € [n]. ((i <j) — (A[i] < A[j]))

Pre-condition: A : t", 1t : (<)
selectionSort(int Al], n) {
1 =0:
while i<n-1){
V=1
j=1+1;

while (j <n){ Theorem: For any input array A of

it (Alj] < A
I (\/E_'- W size n, it the pre-condition holds
j++" pefore running the code, the post-
! condition holds after running
swap(Ali], Alv]); selectionSort(int Al], n).
|++
)
return A;

}
Post-condition: Vi € [n].V] € [n]. ((i <j) — (A[i] < A[j]))

Pre-condition: A : t", 1t : (<)
selectionSort(int Al], n) {

1 =0:
while i<n-1){
V=1
j=1+1;
while (j < n) {
it (Alj] < Alv])
\ =
|++
}
swap(Ali], Alv])
++:
}
return A;

}
Post-condition: Vi € [n].V] € [n]. ((i <j) — (A[i] < A[j]))

Pre-condition: A : ", t: (<)
selectionSort(int Al], n) {
o . nvariant: Yk, Yk, . ((0 <k, < ky < n) A (k; < 1))

V=1 — (A[k1] < A[kz])

j=i+7;

while (j < n) {

it (Alj] < Alv])
V= j; Invariant: Vk. (i <k <j) — (A[i] < A[k])

return A:

}
Post-condition: Vi € [n].V] € [n]. ((i <j) — (A[i] < A[j]))

Cross-chain transaction to ETH:
~method: 1121318093
~contract: EthCrossChainData

\ Ontology
' Chain
Attacker
Poly
Network < -
) Y,
Is owner of...
N EthCrossChainManager N

Call method 0x41973cd9 (putCurEpochConPubKeyBytes)
to replace Keeper's public keys with attacker controlled key

S > EthCrossChainData

Social Processes and Proofs of Theorems and Programs

Richard A. De Millo, Richard J. Lipton, and Alan J. Perlis

't is argued that formal verifications of programs, no matter how obtained,
will not play the same key role in the development of computer science
and software engineering as proofs do in mathematics. Furthermore the

absence of continuity,

specification o

veritication process di
formal verification should no

- Sigr

ifica

Ticult

ntly many rea

to justity anc

Orograms ma

manage. ltis:

el

‘he inevitability of change, and the complexity of

ne formal

elt t
- dominate program language design.

Nat ease of

Program Verification is Declared Dead!

Social Processes and Proofs of Theorems and Programs

Richard A. De Millo, Richard J. Lipton, and Alan J. Perlis

't is argued that formal verifications of programs, no matter how obtained,
will not play the same key role in the development of computer scier
and software engineering as proofs do in mathematics. Furthermo

absence of continuity,

specification o

veritication process di
formal verification should no

- Sigr

ifica

Ticult

ntly many rea

to justity anc

Orograms ma

manage. ltis:

el

‘he inevitability of change, and the complexi

eltt

IS

CE

the
ty of

ne formal
nat ease of
- dominate program language design.

Who Builds a House Without Drawing Blueprints?

Who Builds a House Without Drawing Blueprints?

Architects draw detailed plans before
a brick is laid or a nail is hammered.
But few programmers write even a
rough sketch of what their programs
will do before they start coding. We
can learn from architects.

Who Builds a House Without Drawing Blueprints?

The main reason for writing a formal
spec 1S to apply tools to check it.
Tools cannot find design errors in
informal specifications.

Pre-condition: A : t", 1t : (<)
selectionSort(int Al], n) {

1 =0:
while i<n-1){
V=1
j=1+1;
while (j < n) {
it (Alj] < Alv])
\ =
|++
}
swap(Ali], Alv])
++:
}
return A;

}
Post-condition: Vi € [n].V] € [n]. ((i <j) — (A[i] < A[j]))

Bounded Model Checking:

I Yes! —— Fail
: is there any error
M, S { 1 in k ste);)s? complgteness threshold
: 5 No! E
: | S S
E k + 1 still tractable | t
a OK
ob)
=
M
Y

A problem has been detrecred and windows has been shut down to prevent damage
"TO your computer.

This overrun could potrtentially allow

A driver has overrun a stack-based buffer.

a malicious
user to gain control of this machine.

If this is the first time you've seen this Stop error screen,
restart your <computer. If this screen appears again, follow

‘these steps:

Check to make sure any new hardware or software is properly installed.

If this is a new installation, ask your hardware or software manufacrturer
for any windows updates you might need.

If problems continue, disable or remove any newly installed hardware
or software. Disable BIOS memory options such as caching or shadowing.
If you need to use safe Mode to remove or disable components, restart
your computer, press F8 to select Aadvanced sStartup oprtions, and then

select safe Mode.

Technical information:

www STOP: Ox000000F7 (0x0000028002908980, 0x000029C1DC791LFF4, OXFFFFD63E2386E008, O
x0000000000000000)

aco11eCt1n? data for <crash dump ...
Initializing disk for crash dump ...

How to prove the

i Correctneqg
apsence ol bugs?

(Buaranteea!

selectionSort(int Al], n) {
o . nvariant: Yk, Yk, . (0 <k < ky < m) A (K, <)
V=1 — (A[k1] < A[kz])
j=i+7;
while (j < n) {
it (Alj] < Alv])
V= Invariant: Vk. (i <k <j) — (A[v] < A[k])

return A:

}
Post-condition: Vi € [n].V] € [n]. ((i <j) — (A[i] < A[j]))

Part II: Automated Theorem Proving

AVB,A < (C—D),~(DSA),B< Dj

AVB,A < (C—D),~(DSA),B< Dj

WhatareV, <« , > 0, @, < ?
What are variables (atoms)?
What are assignments (models)?

What does satisfaction mean?

AVB,A < (C—D),~(DSA),B< Dj

AVB,A < (C—D),~(DSA),B< Dj

{AVB,AV-(~CVD),"(DVAYA-(DAA),(BAD)V("BA-D)}

AVB,A < (C—D),~(DSA),B< Dj

{AVB,AV-(~CVD),"(DVAYA-(DAA),(BAD)V("BA-D)}

Is there a satisfying assignment?

AVB,A < (C—D),~(DSA),B< Dj

{AVB,AV-(~CVD),"(DVAYA-(DAA),(BAD)V("BA-D)}

Is there a satisfying assignment?

Check all assignments!

AVB,A < (C—D),~(DSA),B< Dj

{AVB,AV-(~CVD),"(DVAYA-(DAA),(BAD)V("BA-D)}

Is there a satisfying assignment?

Check all assignments!

Can we do better?

AVB,A < (C—D),~(DSA),B< Dj

{AVB,AV-(~CVD),"(DVAYA-(DAA),(BAD)V("BA-D)}

Is there a satisfying assignment?

Check all assignments!

Can we do something smarter?

Conjunctive Normal Form (CNF)
{(AVB,A < (C—-> D),~(D®A),B < Dj

{AVB,AV-(~CVD),"(DVAYA-(DAA),(BAD)V("BA-D)}

Conjunctive Normal Form (CNF)
{(AVB,A < (C—-> D),~(D®A),B < Dj

{AVB,AV-(~CVD),"(DVAYA-(DAA),(BAD)V("BA-D)}

p:CI/\CZ/\’”/\Cm
Ci — ll,l V ll,2V e V li,l”li

L;i=Ao0rl,;=-A

Conjunctive Normal Form (CNF)
{(AVB,A < (C—-> D),~(D®A),B < Dj

{AVB,AV-(~CVD),"(DVAYA-(DAA),(BAD)V("BA-D)}

p:CI/\CZ/\’”/\Cm
Ci — ll,l V ll,2V e V li,l’li

L;i=Ao0rl,;=-A

NORMALISATION THEOREM: For every propositional formula,
there exists an equivalent formula in conjunctive normal form.

Conjunctive Normal Form (CNF)
{(AVB,A < (C—-> D),~(D®A),B < Dj

{AVB,AV-(~CVD),"(DVAYA-(DAA),(BAD)V("BA-D)}

p:CI/\CZ/\’”/\Cm
Ci — ll,l V ll,ZV e V li,l’li

L;i=Ao0rl,;=-A

TSEITIN’S THEOREM: For every propositional formula, there exists
a polynomial size equisatisfiable formula in conjunctive normal form.

Conjunctive Normal Form (CNF)
{(AVB,A < (C—-> D),~(D®A),B < Dj

{AVB,AV-(~CVD),"(DVAYA-(DAA),(BAD)V("BA-D)}

{AVB),AVv(C),Av-D),(~AvD),(-DVA),BvVvV-D),DV-B)}

Can find a satisfying assignment in polynomial time?

Conjunctive Normal Form (CNF)
{(AVB,A<—~ (C—-> D), (D®A),B < D}
{AVB,AV-(~CVD),"(DVAYA-(DAA),(BAD)V("BA-D)}
{AVB),AVC)AAV-D),("AVD)A(CDVA),BV-D)ADV-B)}

{AVB),AVv(C),Av-D),(~AvD),(-DVA),BvVvV-D),DV-B)}

Can find a satisfying assignment in polynomial time?

Conjunctive Normal Form (CNF)
{(AVB,A<—~ (C—-> D), (D®A),B < D}
{AVB,AV-(~CVD),"(DVAYA-(DAA),(BAD)V("BA-D)}
{AVB),AVC)AAV-D),("AVD)A(CDVA),BV-D)ADV-B)}

{AVB),AVv(C),Av-D),(~AvD),(-DVA),BvVvV-D),DV-B)}

ASPVALL, PLASS, TARJAN (1979): For any variable X, the vertices for X and =X exist in a
strongly connected component of the implication graph if and only if the set is not satisfiable.

DAVIS-PUTNAM-LOGEMANN-LOVELAND (DPLL) ALGORITHM

Input: CNF £, and partial assignment m

If fis true under m, return m.

If fis false under m, return L.

If 4 unit literal p under m, then return DPLL (f, m|p — 1]).
If 3 unit literal =p under m, then return DPLL (f, mlp — O]).

Chose an unassigned variable a, and assignitb € {0,1}.

f DPLL (f,m[la — b]) = SAT, return m[a — b]
Else, return DPLL (f, mla = 1 — b])

c; = (7x; VX))
¢, = (Tx; VX3V Xxs)
3 = (X V Xy)

c, = (X3 V xy)
Cs = (x; VX5V 7xy)
Ce = (X V X3)
7= (% VX Vx)

cg = (Xg V 71Xs)

c; = (7x; VX))
¢, = (Tx; VX3V Xxs)
3 = (X V Xy)

c, = (X3 V xy)
Cs = (x; VX5V 7xy)
Ce = (X V X3)
7= (% VX Vx)

cg = (Xg V 71Xs)

DAVIS-PUTNAM-LOGEMANN-LOVELAND (DPLL) ALGORITHM

Input: CNF £, and partial assignment m

If fis true under m, return m.

If fis false under m, return L.

If 4 unit literal p under m, then return DPLL (f, m|p — 1]).
If 3 unit literal =p under m, then return DPLL (f, m|p — O]).

Chose an unassigned variable a, and assignitb € {0,1}.

f DPLL (f,m[la — b]) = SAT, return m[a — b]
Else, return DPLL (f, mla = 1 — b])

c; = (7x; VX))
C, = (X1 VX3V xs)
3 = (X V Xy)

c, = (X3 V xy)
s = (X1 VX5V x,)
Ce = (X V X3)
7= (% VX Vx)

cg = (Xg V 71Xs)

ec

0,c

DAVIS-PUTNAM-LOGEMANN-LOVELAND (DPLL) ALGORITHM

Input: CNF £, and partial assignment m

If fis true under m, return m.

If fis false under m, return L.

If 4 unit literal p under m, then return DPLL (f, m|p — 1]).
If 3 unit literal =p under m, then return DPLL (f, mlp — O]).

Chose an unassigned variable a, and assignitb € {0,1}.

f DPLL (f,m[la — b]) = SAT, return m[a — b]
Else, return DPLL (f, mla = 1 — b])

c; = (7x; VX))
¢, = (Tx; VX3V Xxs)
3 = (X V Xy)

c, = (X3 V xy)
Cs = (x; VX5V 7xy)
Ce = (X V X3)
7= (% VX Vx)

cg = (Xg V 71Xs)

c; = (7x; VX))
¢, = (Tx; VX3V Xxs)
3 = (X V Xy)

c, = (X3 V xy)
Cs = (x; VX5V 7xy)
Ce = (X V X3)
7= (% VX Vx)

cg = (Xg V 71Xs)

c; = (7x; VX))
¢, = (Tx; VX3V Xxs)
3 = (X V Xy)

c, = (X3 V xy)
Cs = (x; VX5V 7xy)
Ce = (X V X3)
7= (% VX Vx)

cg = (Xg V 71Xs)

c; = (7x; VX))
C, = (X VX3V Xs)
3 = (X V Xy)
c, = (X3 V xy)
Cs = (x; VX5V 7xy)
Ce = (X V X3)
7= (X% VX3 Vxy)

cg = (Xg V 71Xs)

O!

0,cg

O

l,c4

c,: conflict

DAVIS-PUTNAM-LOGEMANN-LOVELAND (DPLL) ALGORITHM

Input: CNF £, and partial assignment m

If fis true under m, return m.

If fis false under m, return L.

If 4 unit literal p under m, then return DPLL (f, m|p — 1]).
If 3 unit literal =p under m, then return DPLL (f, mlp — O]).

Chose an unassigned variable a, and assignitb € {0,1}.

f DPLL (f,m[la — b]) = SAT, return m[a — b]
Else, return DPLL (f, mla = 1 — b])

c; = (7x; VX))
C, = (X VX3V Xs)
3 = (X V Xy)
c, = (X3 V xy)
Cs = (x; VX5V 7xy)
Ce = (X V X3)
7= (X% VX3 Vxy)

cg = (Xg V 71Xs)

O!

0,cg

O

1,c, 0,c¢5
l,c 1,c6

Q c;: conflict
l,c4

c,: conflict

¢, = (7x; VX,
¢, = (Tx; VX3V Xxs)
3 = (X V Xy)
c, = (X3 V xy)
s = (X1 VX5V x,)
Ce = (X V X3)
7= (VX Vx)

cg = (Xg V 71Xs)

O!

0,cg

O

l,cq

l,c4

c,: conflict

1,c6

c;: conflict

An Extension:

p:=A|pAp|lpVvp]|p

An Extension:

p:=A|pAp|lpVvp]|p

A:= (e = e)

An Extension:

p:=A|pAp|lpVvp]|p

A:= (e = e)

ecRUV e.—=¢e-—e

An Example:

p:ax=0)A(x+y=35V(y—x=2))

Are there (x, y) such that p can be satisfied?

An Example:

p:ax=0)A(x+y=35V(y—x=2))
A B C

Are there (x, y) such that p can be satisfied?

An Example:

p:ax=0)A(x+y=35V(y—x=2))
p':AANBYVCO)

Are there (x, y) such that p can be satisfied?

An Example:

p:ax=0)A(x+y=35V(y—x=2))
p':AANBYVCO)

Are there (x, y) such that p can be satisfied?

{A:0,B:1,C:0}
{A:0,B:0,C:1}

{A:0,B:1,C:1}

An Example:

p:ax=0)A(x+y=35V(y—x=2))
p':AANBYVCO)

Are there (x, y) such that p can be satisfied?

{(x,y)\x;éO,x+y=3.5,y—x=2}

:0,B: 1, C:

An Example:

p:ax=0)A(x+y=35V(y—x=2))
p':AANBYVCO)

Are there (x, y) such that p can be satisfied?

{(x,y)\x;éO,x+y= 3.5, y—x= 2}
{(0.75,2.75)

:0,B: 1, C:

An Example:

p:ax=0)A(x+y=35Vy+x=2))
p':AANBYVCO)

Are there (x, y) such that p can be satisfied?

{(x,y)\x;éO,x+y=3.5,y+x=2}

:0,B: 1, C:

An Example:

p:ax=0)A(x+y=35Vy+x=2))
p':AANBYVCO)

Are there (x, y) such that p can be satisfied?

{A:0,B:1,C:0}

{A 0. B oc1}

An Example:

p:ax=0)A(x+y=35Vy+x=2))
p':AANBYVCO)

Are there (x, y) such that p can be satisfied?

{A:0,B:1,C:0}

:0,B:0, C:

A0 B C1}

Why does this work?

p:ax=0)A(x+y=35V(y—x=2))
p':AANBYVCO)

Are there (x, y) such that p can be satisfied?

{(x,y)\x;éO,x+y= 3.5, y—x= 2}
{(0.75,2.75)

’ :0,B: 1, C:

Why does this work?

p:ax=0)A(x+y=35V(y—x=2))
p':AANBYVCO)

Are there (x, y) such that p can be satisfied?

{(x,y) |l x#0,x+y=35y—x= 2} Decidability of SLE
{(0.75,2.75)

‘ :0,B:1,C:

diffblue

Al for Code

SRI-CSL/yices2

The Yices SMT Solver d'ﬁblue/Cbmc

eeeeeeeeeeeeeeeeeeeeee

Astree

¥ Polyspace Semmle”

Static Code Analysis

NAA,

Part [II: Automated Program Synthesis

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-5, NO. 4, JULY 1979

Synthesis: Dreams —> Programs

Abstract—Deductive techniques are presented for deriving programs
systematically from given specifications. The specifications express the
purpose of the desired program without giving any hint of the algo-
rithm to be employed. The basic approach is to transform the specifi-
cations repeatedly according to certain rules, until a satisfactory pro-
gram is produced. The rules are guided by a number of strategic
controls. These techniques have been incorporated in a running pro-
gram-synthesis system, called DEDALUS.

Many of the transformation rules represent knowledge about the
program’s subject domain (e.g., numbers, lists, sets); some represent
the meaning of the constructs of the specification language and the
target programming language; and a few rules represent basic program-
ming principles. Two of these principles, the conditional-formation
rule and the recursion-formation rule, account for the introduction of
conditional expressions and of recursive calls into the synthesized pro-
gram. The termination of the program is ensured as new recursive calls
are formed.

Two extensions of the recursion-formation rule are discussed: a pro-
cedure-formation rule, which admits the introduction of auxiliary sub-
routines in the course of the synthesis process, and a generalization
rule, which causes the specifications to be altered to represent a more
general problem that is nevertheless easier to solve. Special techniques
are introduced for the formation of programs with side effects.

The techniques of this paper are illustrated with a sequence of ex-
amples of increasing complexity; programs are constructed for list
processing, numerical calculation, and array computation.

The methods of program synthesis can be applied to various aspects
of programming methodology —program transformation, data abstrac-

ZOHAR MANNA AND RICHARD WALDINGER

"INTRODUCTION

N RECENT vyears there has been increasing activity in the

field of program verification, The goal of these efforts is
to construct computer systems for determining whether a
given program is correct, in the sense of satisfying given
specifications. These attempts have met with increasing suc-
cess; while automatic proofs of the correctness of large pro-
grams may be a long way off, it seems evident that the tech-
niques being developed will be useful in practice, to find the
bugs in faulty programs and to give us confidence in correct
ones.

The general scenario of the verification system is that a pro-
grammer will present his completed computer program, along
with its specifications and associated documentation, to a sys-
tem which will then prove or disprove its correctness. It has
been pointed out, most notably by the advocates of structured
programming, that this is ““putting the cart before the horse.”
Once we have techniques for proving program correctness,
why should we wait to apply them until after the program
is complete? Instead, why not ensure the correctness of the
program while it is being constructed, thereby developing the
program and its correctness proof “hand in hand™?

The point is particularly well-taken when we consider that

4 - I T

User Intent

Dream

User Intent] Program

Synthesis

Dream

max(a, b, c):

Program m = a

User Intent

: if b > a: m
SyntheSIS if ¢ >m:m

return m

Dream

How to describe?

max(a, b, c):

Program m = a

User Intent

: if b > a: m
SyntheSIS if ¢ >m:m

return m

Dream

How to describe? How to design?

max(a, b, c):

Program m = a

User Intent

: if b > a: m
SyntheSIS if ¢ >m:m

return m

Dream

How to describe? How to design? How to ensure?

max(a, b, c):
m = a

User Intent Program

if b>a'm
ifec>m'm
return m

Synthesis

Dream

SPECIFICATION SYNTHESIS VERIFICATION

How to describe? How to design? How to ensure?

max(a, b, c):

User Intent Program

1T b > ar m
ifc>m:m
return m

Synthesis

Dream

max(a, b, c):

Complete Program

Mathematical
Specification

if b>a:rm

Synthesis if ¢ >m:m

return m

def max(a, b, c):

if b>a*m
ifc>mem
return m

def max(a, b, c):
m= a

if b>a:m=D>
1T Cc>m:m=2¢
return m

Vx,y,z. (max(x, V,2) > x) A (max(x, V,2) > y) A (max(x, v,2) > Z)

A ((max(x, V,7) = x) V (max(x, V,7) = y) V (max(x, V,7) = z))

Verification

def max(a, b, c):
m= a
if b>a:rm=0D>

1T Cc>m:m=2¢
return m

Vx,y,z. (max(x, V,2) > x) A (max(x, V,2) > y) A (max(x, v,2) > Z)

A ((max(x, V,7) = x) V (max(x, V,7) = y) V (max(x, V,7) = z))

Verification

def max(a, b, c):

if b>a*m
ifc>mem
return m

Function of three numbers that returns their max.

Write python code for a function of three numbers that returns their
max.

&) Here's the Python code for a function that returns the maximum of three numbers using

comparisons:
python () Copy code
lef (a, b, c):
~a > b and a >= c:
a | a
: b >= a b > ¢
: n b
a | C

Example usage

result = max_of_three(5, , 3)
print ()

Mathematical Specification

Natural Language

Mathematical Specification

Input-Output Examples

Natural Language

Input-Output Examples

def max(a, b, c):
m= a

if b>a*m
ifc>mem
return m

max(1,2,4) =4
max(8,3, —4) = 8
max(10,10,1) = 10

max(1,6,4) =6

max(a, b, c):

max(1,2,4) =4
max(8,3,—4) =8
max(10,10,1) = 10
max(1,6,4) =6

Program

: 1T b > a: m
SyntheSIS if ¢ >m:m

return m

Search Problem
Easy to automate and scale

Easy to describe

Easy to ensurel

max(a, b, c):

Program m = a

max(1,2,4) =4
max(8,3,—4) =8
max(10,10,1) = 10
max(1,6,4) =6

: if b > a: m
SyntheSIS if ¢ >m:m

return m

Search Problem
Easy to automate and scale

Easy to describe

Easy to ensurel

max(a, b, c):
m= a

max(1,2,4) =4
max(8,3,—4) =8
max(10,10,1) = 10
max(1,6,4) =6

Program

if b>a'm
ifc>m:m
return m

Synthesis

Correctness?

Search Problem
Easy to automate and scale

Easy to describe

Easy to ensurel

max(a, b, c):

max(1,2,4) =4
max(8,3,—4) =8
max(10,10,1) = 10
max(1,6,4) =6

Program

if b>a'm
ifc>m:m
return m

Synthesis

Ambiguity?
Correctness?
Overfitting?

Search Problem

Easy to ensurel
Easy to automate and scale sy 10 € -

Easy to describe

max(a, b, c):

max(1,2,4) =4
max(8,3, —4) = 8
max(10,10,1) = 10
max(1,6,4) =6

Program

if b>a* m
ifc>mem
return m

Synthesis

max(a, b, c):

ifb>mm
if a>b:m
return m

Ambiguity!

Search Problem
Easy to automate and scale

Easy to describe

Easy to ensurel

max(a, b, c):
m = a

if b>a:rm
if c>m:m
return m

max(1,2,4) =4
max(8,3, —4) = 8
max(10,10,1) = 10
max(1,6,4) =6

Program

Synthesis

max(a, b, c):

ifb>mm
if a>b:m
return m

Overfitting!

Example-gulded Syntnhesis
of Relational Queries

Example-gulded Synthesis
of Relational Queries

declarative logic programs

Example-gulded Syntnhesis
of Relational Queries

declarative logic programs

Proaram Analysis Network Analysis Knowledge Discovery

Semmle”
Door

,
,
of

SPARQL

aWS TIROS

Rapid

v
Oracle : LOQI.CBlOX Datomic

SQL Developer

Database Querying Industrial Applications

R3

R2

/

Input Tables

Querying

Example-guided Synthesis

R

/ R2

R3

/

Input Tables

Query Synthesis

Query

/
/
O
/
Output Table

End User

Select
rows with
maximum value

for each user.

Find rows with

duplicate values.

Calculate

running average.

Seloct firs! row in each GROUP EY growg?

M 7O N0 SIS TR D SHICI T W DW OF DGR MO MOWS JUADO0 TN S A B

)

Aaess ble that ook e B

L1 & PR erTaes

Lt 42

tedtome tenel

.......................
Il I = = = = = = = == =" =" =B == E W

-~
B4
v

Calculale a Runnng Tutal in SCL Server

WG AR) QAT TNE WSS) ATV KT GIER OO e

e Wbl reen agtats

G

------1
|
|

0w Pt 20 vreus wavs of Sorg e n SO Server 2200 20061 2008

e ity aread P v A meTve! Tl bt Pt A AN oY Cdowwrd 1ov e
E) - - - L - - - - - - - - - -

Select x.1d, x.customer, x.total
. From PURCHASES x

.Join (Select p.customer,

: Max(total)

From PURCHASES p
Group By p.customer) y
:0On y.customer = x.customer

: And y.max_total = x.total

F
[
L

.Select *

.From Users a

Where Exists

. (Select *

From Users b

Where (a.name = b.name

Or a.email = b.email)
And a.ID <> b.id)

Select a.ord, a.val, Avg(b.val)
‘From t As a Join t As b

Where b.ord <= a.ord

:Group By a.ord,a.val

EOrder By a.ord

Bongard problem 47

o)) | (&)
EE | P

®

An Example

GreenSignal
Broadway
Liberty St
William St

LIBERTY ST

Whitehall St

WILLIAM ST

HasTraffic

BROADWAY

Broadway
Wall St
William St
Whitehall St

LIBERTY ST

BROADWAY

WILLIAM ST

An Example

GreenSignal

Broadway
Liberty St
William St

Whitehall St

HasTraffic

Broadway
Wall St
William St
Whitehall St

—

Crashes

Broadway
Whitehall St

LIBERTY ST

BROADWAY

WILLIAM ST

An Example

GreenSignal

Broadway
Liberty St
William St
Whitehall St

HasTraffic

Broadway
Wall St
William St
Whitehall St

—

Crashes(x)

Crashes

Broadway
Whitehall St

— HasTraffic(x), isGreen(x),
Intersects(x, vy),
HasTraffic(y), isGreen(y).

Supervision

Difflog (2019)

ALPS (2013)

Metagol (2016)

ProSvnth (2020)

‘ Scythe (2017)

LASP 2020) @

‘ PatSQL (2021)

Popper (2021)

Zaatar (2017)

GenSynth (2021)

Expressiveness

Supervision

ALPS (2013)

Difflog (2019)

Metagol (2016)

ProSvnth (2020)

ILASP (2020)

Popper (2021)

GenSynth (2021)

General Recursion

Expressiveness

Supervision

Metagol (2016)

GenSynth (2021)

Predicate Invention

Expressiveness

Supervision

Numerical Comparison

Scythe (2017)

‘ PatSQL (2021)

Expressiveness

Supervision

Difflog (2019)

ALPS (2013)

Metagol (2016)

ProSvnth (2020)

‘ Scythe (2017)

LASP 2020) @

‘ PatSQL (2021)

Popper (2021)

Zaatar (2017)

GenSynth (2021)

Expressiveness

Supervision

ALPS (2013)

Difflog (2019)

Metagol (2016)

Zaatar (2017)

E

ProSvnth (2020)

‘ Scythe (2017)

LASP 2020) @

‘ PatSQL (2021)

Popper (2021)

GenSynth (2021)

GS (2021)

Expressiveness

Example-guided Synthesis

GreenSignal
LIBERTY ST
Broadway
- Liberty St
§ William St
§’ Whitehall St
> Crashes
é ‘ Broadway
O Whitehall
o HasTraffic tehall St
Broadway
Wall St
o Crashes(x) : — HasTraffic(x), isGreen(x),
William St Intersects(x, y),
HasTraffic(y), isGreen(y).

Whitehall St

BROADWAY

LIBERTY ST

Example-guided Synthesis

WILLIAM ST

GreenSignal

Broadway

Liberty St

William St
Whitehall St

HasTraffic

Broadway
Wall St
William St
Whitehall St

Liberty
‘O IsGreen

V/

o
Q

e"’@ ,:9@
& Cx
é & [] []
Broadway & William

HasTraffic, %
S &
IsGreen /‘3‘@ 2 HasTraffic,
& & IsGreen
N\

HasTraffic, ! QHasTraffic
IsGreen a Wall St.

Whitehall

Intersects

Crashes(x)

Example-guided Synthesis

. — HasTraffic(x), isGreen(x),

Intersects(x, vy),
HasTraffic(y), isGreen(y).

Liberty
‘OlsGreen
V/
<q%
Yo
S
No
&
Broadway William
HasTraffic, “
X9
IsGreen ” Se ezc’ HasTraffic,
= & & IsGreen
Q \ \o
-
@
o=
E 4 AA
HasTraffic " wHasTraffic

Wall St.

IsGreen a

Whitehall

time in seconds

10-1

|

-3 EGS
—&— Scythe

30 40 50
solved instances

—7— |LASP(F)
—¥— |LASP(L)

|

60

N—

-

m SN RS SRR S SR S R SR S R SR S e
2

—{— ProSynth(F)
—&— ProSynth(L)

Supervision

ALPS (2013)

Difflog (2019)

Metagol (2016)

Zaatar (2017)

E

ProSvnth (2020)

‘ Scythe (2017)

LASP 2020) @

‘ PatSQL (2021)

Popper (2021)

GenSynth (2021)

GS (2021)

Expressiveness

Supervision

ALPS (2013)

Difflog (2019)

Metagol (2016)

Zaatar (2017)

E

ProSvnth (2020)

‘ Scythe (2017)

LASP 2020) @

‘ PatSQL (2021)

Popper (2021)

GenSynth (2021)

Mobius (2023)

GS (2021) .

Expressiveness

scc(x, y) :— path(x,y), path(y, x).
path(x, y) : — edge(x,Yy).
path(x, y) : — path(x, z), path(z, y).

Runtime (seconds)

Mobius
Gensynth
ILASP

Popper

S 7 10 12

Number of benchmarks

15

Supervision

ALPS (2013)

Difflog (2019)

Metagol (2016)

Zaatar (2017)

E

ProSvnth (2020)

Scythe (2017)

LASP 2020) @

Popper (2021)

GenSynth (2021)

Mobius (2023)

GS (2021) .

‘ PatSQL (2021)

Libra (2023)

Expressiveness

SELECT registration.studentID
FROM registration JOIN department
ON registration.deptCode = department.deptCode
WHERE registration.courselD < 500

AND department.school = “Engineering”

SELECT registration.studentID
FROM registration JOIN department
ON registration.deptCode = department.deptCode
WHERE registration.courselID < 500

AND department.school = “Engineering”

SELECT registration.studentID
FROM registration JOIN department

ON registration.deptCode = department.deptCode

AND department.school = “Engineering”

studentID deptCode courselD school
Alice Comp. 201 Engineering
Alice Chem. 310 Arts and Science
Alice Mech. 550 Engineering
Bob Mech. 320 Engineering
Bob Mech. 550 Engineering
Charlie Chem. 310 Arts and Science
David Comp. 500 Engineering
David Mech. 502 Engineering
Erin Chem. 310 Arts and Science

WHERE registration.courselD < 500

courselD < 5007?

N
yes no
N
school = Engineering?
- N\
no

yes
a8

x

hF

time (s)

|

6007 - Scythe |

—A— PATSQL |

500 1 —V— Libra-S i

Libra-E |

400 - i

I

I

300 - i

I

I

200 - :

|

I

100 - :

|

I

. s
0 200 400 600 800 1000 1090

solved instances

CENTRE FOR
Data Sciences and

Analytics

CENTER FOR
Digitalisation, Al, and
Society

SAFEXPRESS CENTRE FOR
Data, Learning, and

Decision Sciences

Koita Centre for
Digital Health

4 N

¥

Centre for Data,
Learning, and
Decision Sciences

CENTRE FOR

Data Sciences and
. Centre for

@ Digitisation, Al,

and Society

Analytics

'j Centre for Health

@
ﬁ./ - Analytics, Research
@mae and Trends (CHART)
Koita Centre
for Digital Health
2. Metadata of open source/public data

Centre for
e : : Economic Data
3. Unified access and integration

and Analysis

Comprehensive Data Lake Framework:

1. Repository of multimodal across

interdisciplinary fields

All Centres will use CDA as its infrastructural foundation

4. Inference, versioning, and provenance \ /

Building Al (with guarantees) as a tool

SAFEXPRESS CENTRE FOR

Data, Learning, and
Decision Sciences

- Data-driven quantitative modelling
(weather, epidemiology, cultural
behaviour)

 Financial Mathematics (risk,
pricing, optimisation)

- Reinforcement Learning

 Automated Reasoning

Al as an agent, and its
interaction with society

Brazilian Artificial Intelligence Strategy (EBIA)
Russia: National Al Strategy
IndiaAl Mission, Responsible Al (2021)
China: New Generation Al Development Plan

South Africa: National Al Plan

CENTER FOR

LIy

UNIFIED PAYMENTS INTERFACE

Digitalisation, Al, and —
Society @R

120 crore 25 crore 36 crore
biometric records linked health records daily transactions

Personal Health & Wellness
e Generation and use of

personalised health data to
identify risks, promote
wellness, and reinforce
healthy behaviour
® Genetic disease screening
® Use of wearables &
healthcare apps

Al + Health Data

e Developing a health data & analytics ecosystem for

Precision Public Health

Integrating multi-modal

infor

preci

mation for multi-scale
sion health

PopL

lation cohorts,

convenience cohorts,
biobanks

Precision Medicine and
Precision Public Health

preventive and personalised medicine

e FEthical, purpose based, privacy preserving health
data architectures that promote appropriate uses,

while minimising risks to individuals

e Use of LLMs to empower citizens & public
institutions with fit-for-purpose information

Intersections

® Assessing impact of food
choices on health

® Promoting appropriate
choices in foods

® [earning from history of
medicine for digital health/
Al policy

Koita Centre for

Digital Health

|

\
5
y

)
iyl
-”

>

-
-
-~

P
»
q
»
r

-
-

Y,
P UATTRN
\
N\

P

)

-
N N

44
K
\

)

CENTRE FOR
Data Sciences and

Analytics

CENTER FOR
Digitalisation, Al, and
Society

SAFEXPRESS CENTRE FOR
Data, Learning, and

Decision Sciences

Koita Centre for
Digital Health

N
PN\
(Vrﬁ"*‘“\\\
(),
7
.,

dSHOKAa

UNIVERSITY

Aalok Thakkar

aalok thakkar@ashoka.edu.in
aalok-thakkargithub.io

