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Therac-25 Radiation Therapy Machine

Administered radiation 
doses hundreds of times 
higher than intended. 

Race Conditions!



Mars Climate Orbiter (1999) 



Boeing 737 MAX
Direct Costs: US$20 billion 
Indirect Costs: US$60 billion 
Deaths: 346

Toyota 
Unintended 
Acceleration

5.2 million vehicles 
US$2.2 billion in lawsuits 

37 deaths



How do you detect bugs?

How do avoid vulnerabilities?

How do ensure security?



Read Your Code Carefully!



Read Your Code Carefully!



Read Your Code Carefully!

Insecure!



Testing?



Testing?

Array Sorting

[26, 1, 2, 300, − 3]

[−3, 1, 2, 26, 300]



Testing?

Slightly 
Better

Array Sorting

[26, 1, 2, 300, − 3]

[−3, 1, 2, 26, 300]



Fuzz Testing

Array Sorting

[26, 1, 2, 300, − 3]

[−3, 1, 2, 26, 300]

[1,2] [0, 0, − 7, − 8, 7]

[1,2] [−7, − 8, 0, 0, 7]



Fuzz Testing

Much 
Better!Array Sorting

[26, 1, 2, 300, − 3]

[−3, 1, 2, 26, 300]

[1,2] [0, 0, − 7, − 8, 7]

[1,2] [−7, − 8, 0, 0, 7]



“Program testing can be used to 
show the presence of bugs, but 
never to show their absence!”  

― Edsger W. Dijkstra



How to prove the  
absence of bugs?

Correctness 
Guarantees!



How can one check a routine in the sense of making 
sure that it is right? In order that the man who checks 

may not have too difficult a task, the programmer 
should make a number of definite assertions which 

can be checked individually, and from which the 
correctness of the whole program easily follows.  

- Alan Turing, 1949



Array Sorting

[26, 1, 2, 300, − 3]

[−3, 1, 2, 26, 300]

[1,2] [0, 0, − 7, − 8, 7]

[1,2] [−7, − 8, 0, 0, 7]



Array Sorting8 5 3 2



Array Sorting83 52



selectionSort(int A[], n) { 
i = 0; 
while (i < n - 1) { 

v = i; 
j = i + 1; 
while (j < n) { 

if (A[j] < A[v])  
v = j;  
j++ 

} 
swap(A[i], A[v]); 
i++; 

} 
return A; 

} 



Post-condition: I want a sorted array!

selectionSort(int A[], n) { 
i = 0; 
while (i < n - 1) { 

v = i; 
j = i + 1; 
while (j < n) { 

if (A[j] < A[v])  
v = j;  
j++ 

} 
swap(A[i], A[v]); 
i++; 

} 
return A; 

} 

Pre-condition: I have an array!



Post-condition: I want a sorted array! Specification. 

selectionSort(int A[], n) { 
i = 0; 
while (i < n - 1) { 

v = i; 
j = i + 1; 
while (j < n) { 

if (A[j] < A[v])  
v = j;  
j++ 

} 
swap(A[i], A[v]); 
i++; 

} 
return A; 

} 

Pre-condition: I have an array!



Post-condition: ∀i ∈ [n] . ∀j ∈ [n] . ((i < j) → (A[i] < A[ j]))

selectionSort(int A[], n) { 
i = 0; 
while (i < n - 1) { 

v = i; 
j = i + 1; 
while (j < n) { 

if (A[j] < A[v])  
v = j;  
j++ 

} 
swap(A[i], A[v]); 
i++; 

} 
return A; 

} 

Pre-condition: A : tn, t : ( ⪯ )



Post-condition: ∀i ∈ [n] . ∀j ∈ [n] . ((i < j) → (A[i] ≤ A[ j]))
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v = j;  
j++ 

} 
swap(A[i], A[v]); 
i++; 
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return A; 
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Pre-condition: A : tn, t : ( ⪯ )



Post-condition: ∀i ∈ [n] . ∀j ∈ [n] . ((i < j) → (A[i] ≤ A[ j]))

Theorem: For any input array A of 
size n , if the pre-condition holds 
before running the code, the post-
condition holds after running 
selectionSort(int A[], n). 

selectionSort(int A[], n) { 
i = 0; 
while (i < n - 1) { 

v = i; 
j = i + 1; 
while (j < n) { 

if (A[j] < A[v])  
v = j;  
j++ 

} 
swap(A[i], A[v]); 
i++; 

} 
return A; 

} 

Pre-condition: A : tn, t : ( ⪯ )





Post-condition: ∀i ∈ [n] . ∀j ∈ [n] . ((i < j) → (A[i] ≤ A[ j]))

selectionSort(int A[], n) { 
i = 0; 
while (i < n - 1) { 

v = i; 
j = i + 1; 
while (j < n) { 

if (A[j] < A[v])  
v = j;  
j++ 

} 
swap(A[i], A[v]); 
i++; 

} 
return A; 

} 

Pre-condition: A : tn, t : ( ⪯ )



Post-condition: ∀i ∈ [n] . ∀j ∈ [n] . ((i < j) → (A[i] ≤ A[ j]))

selectionSort(int A[], n) { 
i = 0; 
while (i < n - 1) { 

v = i; 
j = i + 1; 
while (j < n) { 

if (A[j] < A[v])  
v = j;  
j++ 

} 
swap(A[i], A[v]); 
i++; 

} 
return A; 

} 

Invariant: ∀k1 ∀k2 . ((0 ≤ k1 < k2 < n) ∧ (k1 < i))
→ (A[k1] ≤ A[k2])

Invariant: ∀k . (i ≤ k ≤ j) → (A[i] ≤ A[k])

Pre-condition: A : tn, t : ( ⪯ )





Social Processes and Proofs of Theorems and Programs

Richard A. De Millo, Richard J. Lipton, and Alan J. Perlis

It is argued that formal verifications of programs, no matter how obtained, 
will not play the same key role in the development of computer science 
and software engineering as proofs do in mathematics. Furthermore the 
absence of continuity, the inevitability of change, and the complexity of 

specification of significantly many real programs make the formal 
verification process difficult to justify and manage. It is felt that ease of 

formal verification should not dominate program language design.



Social Processes and Proofs of Theorems and Programs

Richard A. De Millo, Richard J. Lipton, and Alan J. Perlis

It is argued that formal verifications of programs, no matter how obtained, 
will not play the same key role in the development of computer science 
and software engineering as proofs do in mathematics. Furthermore the 
absence of continuity, the inevitability of change, and the complexity of 

specification of significantly many real programs make the formal 
verification process difficult to justify and manage. It is felt that ease of 

formal verification should not dominate program language design.

Program Verification is Declared Dead! 



Who Builds a House Without Drawing Blueprints?



Who Builds a House Without Drawing Blueprints?

Architects draw detailed plans before 
a brick is laid or a nail is hammered. 
But few programmers write even a 

rough sketch of what their programs 
will do before they start coding. We 

can learn from architects.



Who Builds a House Without Drawing Blueprints?

The main reason for writing a formal 
spec is to apply tools to check it. 

Tools cannot find design errors in 
informal specifications. 



Post-condition: ∀i ∈ [n] . ∀j ∈ [n] . ((i < j) → (A[i] ≤ A[ j]))

selectionSort(int A[], n) { 
i = 0; 
while (i < n - 1) { 

v = i; 
j = i + 1; 
while (j < n) { 

if (A[j] < A[v])  
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j++ 
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i++; 
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return A; 

} 

Pre-condition: A : tn, t : ( ⪯ )









How to prove the  
absence of bugs?

Correctness 
Guarantees!



Post-condition: ∀i ∈ [n] . ∀j ∈ [n] . ((i < j) → (A[i] ≤ A[ j]))

selectionSort(int A[], n) { 
i = 0; 
while (i < n - 1) { 

v = i; 
j = i + 1; 
while (j < n) { 

if (A[j] < A[v])  
v = j;  
j++ 

} 
swap(A[i], A[v]); 
i++; 

} 
return A; 

} 

Invariant: ∀k1 ∀k2 . ((0 ≤ k1 < k2 < n) ∧ (k1 < i))
→ (A[k1] ≤ A[k2])

Invariant: ∀k . (i ≤ k ≤ j) → (A[v] ≤ A[k])



Part II: Automated Theorem Proving



{A ∨ B, A ← (C → D), ¬(D ⊕ A), B ↔ D}



{A ∨ B, A ← (C → D), ¬(D ⊕ A), B ↔ D}

What are ?∨ , ← , → , ¬, ⊕ , ↔

What are variables (atoms)?

What are assignments (models)?

What does satisfaction mean? 



{A ∨ B, A ← (C → D), ¬(D ⊕ A), B ↔ D}



{A ∨ B, A ← (C → D), ¬(D ⊕ A), B ↔ D}

{A ∨ B, A ∨ ¬(¬C ∨ D), ¬((D ∨ A) ∧ ¬(D ∧ A)), (B ∧ D) ∨ (¬B ∧ ¬D)}



{A ∨ B, A ← (C → D), ¬(D ⊕ A), B ↔ D}

{A ∨ B, A ∨ ¬(¬C ∨ D), ¬((D ∨ A) ∧ ¬(D ∧ A)), (B ∧ D) ∨ (¬B ∧ ¬D)}

Is there a satisfying assignment?



{A ∨ B, A ← (C → D), ¬(D ⊕ A), B ↔ D}

{A ∨ B, A ∨ ¬(¬C ∨ D), ¬((D ∨ A) ∧ ¬(D ∧ A)), (B ∧ D) ∨ (¬B ∧ ¬D)}

Is there a satisfying assignment?

Check all assignments! 



{A ∨ B, A ← (C → D), ¬(D ⊕ A), B ↔ D}

{A ∨ B, A ∨ ¬(¬C ∨ D), ¬((D ∨ A) ∧ ¬(D ∧ A)), (B ∧ D) ∨ (¬B ∧ ¬D)}

Is there a satisfying assignment?

Check all assignments! 

Can we do better?



{A ∨ B, A ← (C → D), ¬(D ⊕ A), B ↔ D}

{A ∨ B, A ∨ ¬(¬C ∨ D), ¬((D ∨ A) ∧ ¬(D ∧ A)), (B ∧ D) ∨ (¬B ∧ ¬D)}

Is there a satisfying assignment?

Check all assignments! 

Can we do something smarter?



{A ∨ B, A ← (C → D), ¬(D ⊕ A), B ↔ D}

{A ∨ B, A ∨ ¬(¬C ∨ D), ¬((D ∨ A) ∧ ¬(D ∧ A)), (B ∧ D) ∨ (¬B ∧ ¬D)}

Conjunctive Normal Form (CNF)



{A ∨ B, A ← (C → D), ¬(D ⊕ A), B ↔ D}

{A ∨ B, A ∨ ¬(¬C ∨ D), ¬((D ∨ A) ∧ ¬(D ∧ A)), (B ∧ D) ∨ (¬B ∧ ¬D)}

Conjunctive Normal Form (CNF)

p = c1 ∧ c2 ∧ … ∧ cm

ci = li,1 ∨ li,2 ∨ … ∨ li,ni

li,j = A or li,j = ¬A



{A ∨ B, A ← (C → D), ¬(D ⊕ A), B ↔ D}

{A ∨ B, A ∨ ¬(¬C ∨ D), ¬((D ∨ A) ∧ ¬(D ∧ A)), (B ∧ D) ∨ (¬B ∧ ¬D)}

Conjunctive Normal Form (CNF)

p = c1 ∧ c2 ∧ … ∧ cm

ci = li,1 ∨ li,2 ∨ … ∨ li,ni

li,j = A or li,j = ¬A

Normalisation Theorem: For every propositional formula, 
there exists an equivalent formula in conjunctive normal form. 



{A ∨ B, A ← (C → D), ¬(D ⊕ A), B ↔ D}

{A ∨ B, A ∨ ¬(¬C ∨ D), ¬((D ∨ A) ∧ ¬(D ∧ A)), (B ∧ D) ∨ (¬B ∧ ¬D)}

Conjunctive Normal Form (CNF)

p = c1 ∧ c2 ∧ … ∧ cm

ci = li,1 ∨ li,2 ∨ … ∨ li,ni

li,j = A or li,j = ¬A

Tseitin’s Theorem: For every propositional formula, there exists 
a polynomial size equisatisfiable formula in conjunctive normal form. 



{A ∨ B, A ← (C → D), ¬(D ⊕ A), B ↔ D}

{A ∨ B, A ∨ ¬(¬C ∨ D), ¬((D ∨ A) ∧ ¬(D ∧ A)), (B ∧ D) ∨ (¬B ∧ ¬D)}

Conjunctive Normal Form (CNF)

{(A ∨ B), (A ∨ C), (A ∨ ¬D), (¬A ∨ D), (¬D ∨ A), (B ∨ ¬D), (D ∨ ¬B)}

Can find a satisfying assignment in polynomial time?



{A ∨ B, A ← (C → D), ¬(D ⊕ A), B ↔ D}

{A ∨ B, A ∨ ¬(¬C ∨ D), ¬((D ∨ A) ∧ ¬(D ∧ A)), (B ∧ D) ∨ (¬B ∧ ¬D)}

Conjunctive Normal Form (CNF)
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Can find a satisfying assignment in polynomial time?



{A ∨ B, A ← (C → D), ¬(D ⊕ A), B ↔ D}

{A ∨ B, A ∨ ¬(¬C ∨ D), ¬((D ∨ A) ∧ ¬(D ∧ A)), (B ∧ D) ∨ (¬B ∧ ¬D)}

Conjunctive Normal Form (CNF)

{(A ∨ B), (A ∨ C) ∧ (A ∨ ¬D), (¬A ∨ D) ∧ (¬D ∨ A), (B ∨ ¬D) ∧ (D ∨ ¬B)}

{(A ∨ B), (A ∨ C), (A ∨ ¬D), (¬A ∨ D), (¬D ∨ A), (B ∨ ¬D), (D ∨ ¬B)}



A

¬B¬A

B C D

¬D¬C

Aspvall, Plass, Tarjan (1979): For any variable , the vertices for  and  exist in a 
strongly connected component of the implication graph if and only if the set is not satisfiable. 

X X ¬X



Davis–Putnam–Logemann–Loveland (DPLL) Algorithm

Input: CNF , and partial assignment f m

Chose an unassigned variable , and assign it .a b ∈ {0,1}

If , return DPLL (f, m[a → b]) = SAT m[a → b]

Else, return DPLL (f, m[a → 1 − b])

If  is true under , return .f m m
If  is false under , return .f m ⊥

If  unit literal  under , then return .∃ p m DPLL (f, m[p → 1])
If  unit literal  under , then return .∃ ¬p m DPLL (f, m[p → 0])



c1 = (¬x1 ∨ x2)

c2 = (¬x1 ∨ x3 ∨ x5)

c3 = (¬x2 ∨ x4)

c4 = (¬x3 ∨ ¬x4)

c5 = (x1 ∨ x5 ∨ ¬x2)

c6 = (x2 ∨ x3)

c7 = (x2 ∨ ¬x3 ∨ x7)

c8 = (x6 ∨ ¬x5)



c1 = (¬x1 ∨ x2)

c2 = (¬x1 ∨ x3 ∨ x5)

c3 = (¬x2 ∨ x4)

c4 = (¬x3 ∨ ¬x4)

c5 = (x1 ∨ x5 ∨ ¬x2)

c6 = (x2 ∨ x3)

c7 = (x2 ∨ ¬x3 ∨ x7)

c8 = (x6 ∨ ¬x5)

x6

x5

0



Davis–Putnam–Logemann–Loveland (DPLL) Algorithm

Input: CNF , and partial assignment f m

Chose an unassigned variable , and assign it .a b ∈ {0,1}

If , return DPLL (f, m[a → b]) = SAT m[a → b]

Else, return DPLL (f, m[a → 1 − b])

If  is true under , return .f m m
If  is false under , return .f m ⊥

If  unit literal  under , then return .∃ p m DPLL (f, m[p → 1])
If  unit literal  under , then return .∃ ¬p m DPLL (f, m[p → 0])



c1 = (¬x1 ∨ x2)

c2 = (¬x1 ∨ x3 ∨ x5)

c3 = (¬x2 ∨ x4)

c4 = (¬x3 ∨ ¬x4)

c5 = (x1 ∨ x5 ∨ ¬x2)

c6 = (x2 ∨ x3)

c7 = (x2 ∨ ¬x3 ∨ x7)

c8 = (x6 ∨ ¬x5)

x6

x5

x7

0

0,c8



Davis–Putnam–Logemann–Loveland (DPLL) Algorithm

Input: CNF , and partial assignment f m

Chose an unassigned variable , and assign it .a b ∈ {0,1}

If , return DPLL (f, m[a → b]) = SAT m[a → b]

Else, return DPLL (f, m[a → 1 − b])

If  is true under , return .f m m
If  is false under , return .f m ⊥

If  unit literal  under , then return .∃ p m DPLL (f, m[p → 1])
If  unit literal  under , then return .∃ ¬p m DPLL (f, m[p → 0])



c1 = (¬x1 ∨ x2)

c2 = (¬x1 ∨ x3 ∨ x5)

c3 = (¬x2 ∨ x4)

c4 = (¬x3 ∨ ¬x4)

c5 = (x1 ∨ x5 ∨ ¬x2)

c6 = (x2 ∨ x3)

c7 = (x2 ∨ ¬x3 ∨ x7)

c8 = (x6 ∨ ¬x5)

x6

x5

x7

x1

0

0,c8

0



c1 = (¬x1 ∨ x2)

c2 = (¬x1 ∨ x3 ∨ x5)

c3 = (¬x2 ∨ x4)

c4 = (¬x3 ∨ ¬x4)

c5 = (x1 ∨ x5 ∨ ¬x2)

c6 = (x2 ∨ x3)

c7 = (x2 ∨ ¬x3 ∨ x7)

c8 = (x6 ∨ ¬x5)

x6

x5

x7

x3

x1

0

0,c8

0

1



c1 = (¬x1 ∨ x2)

c2 = (¬x1 ∨ x3 ∨ x5)

c3 = (¬x2 ∨ x4)

c4 = (¬x3 ∨ ¬x4)

c5 = (x1 ∨ x5 ∨ ¬x2)

c6 = (x2 ∨ x3)

c7 = (x2 ∨ ¬x3 ∨ x7)

c8 = (x6 ∨ ¬x5)

x6

x5

x7

x3

x1

0

0,c8

0

1

1,c2



c1 = (¬x1 ∨ x2)

c2 = (¬x1 ∨ x3 ∨ x5)

c3 = (¬x2 ∨ x4)

c4 = (¬x3 ∨ ¬x4)

c5 = (x1 ∨ x5 ∨ ¬x2)

c6 = (x2 ∨ x3)

c7 = (x2 ∨ ¬x3 ∨ x7)

c8 = (x6 ∨ ¬x5)

x6

x5

x7

x3

x2

x1

x4

: conflictc4

0

0,c8

0

1

1,c2

1,c1

1,c3



Davis–Putnam–Logemann–Loveland (DPLL) Algorithm

Input: CNF , and partial assignment f m

Chose an unassigned variable , and assign it .a b ∈ {0,1}

If , return DPLL (f, m[a → b]) = SAT m[a → b]

Else, return DPLL (f, m[a → 1 − b])

If  is true under , return .f m m
If  is false under , return .f m ⊥

If  unit literal  under , then return .∃ p m DPLL (f, m[p → 1])
If  unit literal  under , then return .∃ ¬p m DPLL (f, m[p → 0])



c1 = (¬x1 ∨ x2)

c2 = (¬x1 ∨ x3 ∨ x5)

c3 = (¬x2 ∨ x4)

c4 = (¬x3 ∨ ¬x4)

c5 = (x1 ∨ x5 ∨ ¬x2)

c6 = (x2 ∨ x3)

c7 = (x2 ∨ ¬x3 ∨ x7)

c8 = (x6 ∨ ¬x5)

x6

x5

x7

x3

x2

x1

x4

: conflictc4

0

0,c8

0

1

1,c2

1,c1

1,c3

0
x2

0,c5

x3

1,c6
: conflictc7



c1 = (¬x1 ∨ x2)

c2 = (¬x1 ∨ x3 ∨ x5)

c3 = (¬x2 ∨ x4)

c4 = (¬x3 ∨ ¬x4)

c5 = (x1 ∨ x5 ∨ ¬x2)

c6 = (x2 ∨ x3)

c7 = (x2 ∨ ¬x3 ∨ x7)

c8 = (x6 ∨ ¬x5)

x6

x5

x7

x3

x2

x1

x4

: conflictc4

0

0,c8

0

1

1,c2

1,c1

1,c3

0
x2

0,c5

x3

1,c6
: conflictc7

1
⋮



An Extension: 

p := A | p ∧ p | p ∨ p | ¬p



p := A | p ∧ p | p ∨ p | ¬p

A := (e = e)

An Extension: 



p := A | p ∧ p | p ∨ p | ¬p

e := e ∽ ee ∈ ℝ ∪ V

∽ := + |−

A := (e = e)

An Extension: 



An Example:

Are there  such that  can be satisfied?(x, y) p

p : ¬(x = 0) ∧ ((x + y = 3.5) ∨ (y − x = 2))



An Example:
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Are there  such that  can be satisfied?(x, y) p

A B C
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Are there  such that  can be satisfied?(x, y) p

p′￼ : ¬A ∧ (B ∨ C)



An Example:
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{A : 0, B : 0, C : 1}

{A : 0, B : 1, C : 1}

p′￼ : ¬A ∧ (B ∨ C)



An Example:

p : ¬(x = 0) ∧ ((x + y = 3.5) ∨ (y − x = 2))
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An Example:

p : ¬(x = 0) ∧ ((x + y = 3.5) ∨ (y − x = 2))

Are there  such that  can be satisfied?(x, y) p

{A : 0, B : 1, C : 1}

{(0.75,2.75)}
{(x, y) |x ≠ 0, x + y = 3.5, y − x = 2}

p′￼ : ¬A ∧ (B ∨ C)
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An Example:

p : ¬(x = 0) ∧ ((x + y = 3.5) ∨ (y + x = 2))

Are there  such that  can be satisfied?(x, y) p

{A : 0, B : 1, C : 1}

{A : 0, B : 1, C : 0}

{A : 0, B : 0, C : 1}

p′￼ : ¬A ∧ (B ∨ C)



Why does this work?
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Why does this work?

p : ¬(x = 0) ∧ ((x + y = 3.5) ∨ (y − x = 2))

Are there  such that  can be satisfied?(x, y) p

{A : 0, B : 1, C : 1}

{(0.75,2.75)}
{(x, y) |x ≠ 0, x + y = 3.5, y − x = 2} Decidability of SLE 

p′￼ : ¬A ∧ (B ∨ C)
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 ∀x, y, z . (max(x, y, z) ≥ x) ∧ (max(x, y, z) ≥ y) ∧ (max(x, y, z) ≥ z)
∧ ((max(x, y, z) = x) ∨ (max(x, y, z) = y) ∨ (max(x, y, z) = z))



Verification

 ∀x, y, z . (max(x, y, z) ≥ x) ∧ (max(x, y, z) ≥ y) ∧ (max(x, y, z) ≥ z)
∧ ((max(x, y, z) = x) ∨ (max(x, y, z) = y) ∨ (max(x, y, z) = z))



Function of three numbers that returns their max.

Verification
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PrologPQL LogiQL CodeQL

SQL Datalog SPARQLCypher



TIROS

Program Analysis Network Analysis Knowledge Discovery

Database Querying Industrial Applications
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scc(x, y)  path(x, y), path(y, x). 
path(x, y)  edge(x, y). 
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