
Aalok Thakkar, Ashoka University

The Art of Writing Righting Code

IIIT Delhi, CSE Seminar Series
February 14, 2025

Poly Network Hack
August 10, 2021

611 million USD or 4600 crores INR

Therac-25 Radiation Therapy Machine

Administered radiation
doses hundreds of times
higher than intended.

Race Conditions!

Mars Climate Orbiter (1999)

Boeing 737 MAX
Direct Costs: US$20 billion
Indirect Costs: US$60 billion
Deaths: 346

Toyota
Unintended
Acceleration

5.2 million vehicles
US$2.2 billion in lawsuits

37 deaths

How do you detect bugs?

How do avoid vulnerabilities?

How do ensure security?

Read Your Code Carefully!

Read Your Code Carefully!

Read Your Code Carefully!

Insecure!

Testing?

Testing?

Array Sorting

[26, 1, 2, 300, − 3]

[−3, 1, 2, 26, 300]

Testing?

Slightly
Better

Array Sorting

[26, 1, 2, 300, − 3]

[−3, 1, 2, 26, 300]

Fuzz Testing

Array Sorting

[26, 1, 2, 300, − 3]

[−3, 1, 2, 26, 300]

[1,2] [0, 0, − 7, − 8, 7]

[1,2] [−7, − 8, 0, 0, 7]

Fuzz Testing

Much
Better!Array Sorting

[26, 1, 2, 300, − 3]

[−3, 1, 2, 26, 300]

[1,2] [0, 0, − 7, − 8, 7]

[1,2] [−7, − 8, 0, 0, 7]

“Program testing can be used to
show the presence of bugs, but
never to show their absence!”

― Edsger W. Dijkstra

How to prove the
absence of bugs?

Correctness
Guarantees!

How can one check a routine in the sense of making
sure that it is right? In order that the man who checks

may not have too difficult a task, the programmer
should make a number of definite assertions which

can be checked individually, and from which the
correctness of the whole program easily follows.

- Alan Turing, 1949

Array Sorting

[26, 1, 2, 300, − 3]

[−3, 1, 2, 26, 300]

[1,2] [0, 0, − 7, − 8, 7]

[1,2] [−7, − 8, 0, 0, 7]

Array Sorting8 5 3 2

Array Sorting83 52

selectionSort(int A[], n) {
i = 0;
while (i < n - 1) {

v = i;
j = i + 1;
while (j < n) {

if (A[j] < A[v])
v = j;
j++

}
swap(A[i], A[v]);
i++;

}
return A;

}

Post-condition: I want a sorted array!

selectionSort(int A[], n) {
i = 0;
while (i < n - 1) {

v = i;
j = i + 1;
while (j < n) {

if (A[j] < A[v])
v = j;
j++

}
swap(A[i], A[v]);
i++;

}
return A;

}

Pre-condition: I have an array!

Post-condition: I want a sorted array! Specification.

selectionSort(int A[], n) {
i = 0;
while (i < n - 1) {

v = i;
j = i + 1;
while (j < n) {

if (A[j] < A[v])
v = j;
j++

}
swap(A[i], A[v]);
i++;

}
return A;

}

Pre-condition: I have an array!

Post-condition: ∀i ∈ [n] . ∀j ∈ [n] . ((i < j) → (A[i] < A[j]))

selectionSort(int A[], n) {
i = 0;
while (i < n - 1) {

v = i;
j = i + 1;
while (j < n) {

if (A[j] < A[v])
v = j;
j++

}
swap(A[i], A[v]);
i++;

}
return A;

}

Pre-condition: A : tn, t : (⪯)

Post-condition: ∀i ∈ [n] . ∀j ∈ [n] . ((i < j) → (A[i] ≤ A[j]))

selectionSort(int A[], n) {
i = 0;
while (i < n - 1) {

v = i;
j = i + 1;
while (j < n) {

if (A[j] < A[v])
v = j;
j++

}
swap(A[i], A[v]);
i++;

}
return A;

}

Pre-condition: A : tn, t : (⪯)

Post-condition: ∀i ∈ [n] . ∀j ∈ [n] . ((i < j) → (A[i] ≤ A[j]))

Theorem: For any input array A of
size n , if the pre-condition holds
before running the code, the post-
condition holds after running
selectionSort(int A[], n).

selectionSort(int A[], n) {
i = 0;
while (i < n - 1) {

v = i;
j = i + 1;
while (j < n) {

if (A[j] < A[v])
v = j;
j++

}
swap(A[i], A[v]);
i++;

}
return A;

}

Pre-condition: A : tn, t : (⪯)

Post-condition: ∀i ∈ [n] . ∀j ∈ [n] . ((i < j) → (A[i] ≤ A[j]))

selectionSort(int A[], n) {
i = 0;
while (i < n - 1) {

v = i;
j = i + 1;
while (j < n) {

if (A[j] < A[v])
v = j;
j++

}
swap(A[i], A[v]);
i++;

}
return A;

}

Pre-condition: A : tn, t : (⪯)

Post-condition: ∀i ∈ [n] . ∀j ∈ [n] . ((i < j) → (A[i] ≤ A[j]))

selectionSort(int A[], n) {
i = 0;
while (i < n - 1) {

v = i;
j = i + 1;
while (j < n) {

if (A[j] < A[v])
v = j;
j++

}
swap(A[i], A[v]);
i++;

}
return A;

}

Invariant: ∀k1 ∀k2 . ((0 ≤ k1 < k2 < n) ∧ (k1 < i))
→ (A[k1] ≤ A[k2])

Invariant: ∀k . (i ≤ k ≤ j) → (A[i] ≤ A[k])

Pre-condition: A : tn, t : (⪯)

Social Processes and Proofs of Theorems and Programs

Richard A. De Millo, Richard J. Lipton, and Alan J. Perlis

It is argued that formal verifications of programs, no matter how obtained,
will not play the same key role in the development of computer science
and software engineering as proofs do in mathematics. Furthermore the
absence of continuity, the inevitability of change, and the complexity of

specification of significantly many real programs make the formal
verification process difficult to justify and manage. It is felt that ease of

formal verification should not dominate program language design.

Social Processes and Proofs of Theorems and Programs

Richard A. De Millo, Richard J. Lipton, and Alan J. Perlis

It is argued that formal verifications of programs, no matter how obtained,
will not play the same key role in the development of computer science
and software engineering as proofs do in mathematics. Furthermore the
absence of continuity, the inevitability of change, and the complexity of

specification of significantly many real programs make the formal
verification process difficult to justify and manage. It is felt that ease of

formal verification should not dominate program language design.

Program Verification is Declared Dead!

Who Builds a House Without Drawing Blueprints?

Who Builds a House Without Drawing Blueprints?

Architects draw detailed plans before
a brick is laid or a nail is hammered.
But few programmers write even a

rough sketch of what their programs
will do before they start coding. We

can learn from architects.

Who Builds a House Without Drawing Blueprints?

The main reason for writing a formal
spec is to apply tools to check it.

Tools cannot find design errors in
informal specifications.

Post-condition: ∀i ∈ [n] . ∀j ∈ [n] . ((i < j) → (A[i] ≤ A[j]))

selectionSort(int A[], n) {
i = 0;
while (i < n - 1) {

v = i;
j = i + 1;
while (j < n) {

if (A[j] < A[v])
v = j;
j++

}
swap(A[i], A[v]);
i++;

}
return A;

}

Pre-condition: A : tn, t : (⪯)

How to prove the
absence of bugs?

Correctness
Guarantees!

Post-condition: ∀i ∈ [n] . ∀j ∈ [n] . ((i < j) → (A[i] ≤ A[j]))

selectionSort(int A[], n) {
i = 0;
while (i < n - 1) {

v = i;
j = i + 1;
while (j < n) {

if (A[j] < A[v])
v = j;
j++

}
swap(A[i], A[v]);
i++;

}
return A;

}

Invariant: ∀k1 ∀k2 . ((0 ≤ k1 < k2 < n) ∧ (k1 < i))
→ (A[k1] ≤ A[k2])

Invariant: ∀k . (i ≤ k ≤ j) → (A[v] ≤ A[k])

Part II: Automated Theorem Proving

{A ∨ B, A ← (C → D), ¬(D ⊕ A), B ↔ D}

{A ∨ B, A ← (C → D), ¬(D ⊕ A), B ↔ D}

What are ?∨ , ← , → , ¬, ⊕ , ↔

What are variables (atoms)?

What are assignments (models)?

What does satisfaction mean?

{A ∨ B, A ← (C → D), ¬(D ⊕ A), B ↔ D}

{A ∨ B, A ← (C → D), ¬(D ⊕ A), B ↔ D}

{A ∨ B, A ∨ ¬(¬C ∨ D), ¬((D ∨ A) ∧ ¬(D ∧ A)), (B ∧ D) ∨ (¬B ∧ ¬D)}

{A ∨ B, A ← (C → D), ¬(D ⊕ A), B ↔ D}

{A ∨ B, A ∨ ¬(¬C ∨ D), ¬((D ∨ A) ∧ ¬(D ∧ A)), (B ∧ D) ∨ (¬B ∧ ¬D)}

Is there a satisfying assignment?

{A ∨ B, A ← (C → D), ¬(D ⊕ A), B ↔ D}

{A ∨ B, A ∨ ¬(¬C ∨ D), ¬((D ∨ A) ∧ ¬(D ∧ A)), (B ∧ D) ∨ (¬B ∧ ¬D)}

Is there a satisfying assignment?

Check all assignments!

{A ∨ B, A ← (C → D), ¬(D ⊕ A), B ↔ D}

{A ∨ B, A ∨ ¬(¬C ∨ D), ¬((D ∨ A) ∧ ¬(D ∧ A)), (B ∧ D) ∨ (¬B ∧ ¬D)}

Is there a satisfying assignment?

Check all assignments!

Can we do better?

{A ∨ B, A ← (C → D), ¬(D ⊕ A), B ↔ D}

{A ∨ B, A ∨ ¬(¬C ∨ D), ¬((D ∨ A) ∧ ¬(D ∧ A)), (B ∧ D) ∨ (¬B ∧ ¬D)}

Is there a satisfying assignment?

Check all assignments!

Can we do something smarter?

{A ∨ B, A ← (C → D), ¬(D ⊕ A), B ↔ D}

{A ∨ B, A ∨ ¬(¬C ∨ D), ¬((D ∨ A) ∧ ¬(D ∧ A)), (B ∧ D) ∨ (¬B ∧ ¬D)}

Conjunctive Normal Form (CNF)

{A ∨ B, A ← (C → D), ¬(D ⊕ A), B ↔ D}

{A ∨ B, A ∨ ¬(¬C ∨ D), ¬((D ∨ A) ∧ ¬(D ∧ A)), (B ∧ D) ∨ (¬B ∧ ¬D)}

Conjunctive Normal Form (CNF)

p = c1 ∧ c2 ∧ … ∧ cm

ci = li,1 ∨ li,2 ∨ … ∨ li,ni

li,j = A or li,j = ¬A

{A ∨ B, A ← (C → D), ¬(D ⊕ A), B ↔ D}

{A ∨ B, A ∨ ¬(¬C ∨ D), ¬((D ∨ A) ∧ ¬(D ∧ A)), (B ∧ D) ∨ (¬B ∧ ¬D)}

Conjunctive Normal Form (CNF)

p = c1 ∧ c2 ∧ … ∧ cm

ci = li,1 ∨ li,2 ∨ … ∨ li,ni

li,j = A or li,j = ¬A

Normalisation Theorem: For every propositional formula,
there exists an equivalent formula in conjunctive normal form.

{A ∨ B, A ← (C → D), ¬(D ⊕ A), B ↔ D}

{A ∨ B, A ∨ ¬(¬C ∨ D), ¬((D ∨ A) ∧ ¬(D ∧ A)), (B ∧ D) ∨ (¬B ∧ ¬D)}

Conjunctive Normal Form (CNF)

p = c1 ∧ c2 ∧ … ∧ cm

ci = li,1 ∨ li,2 ∨ … ∨ li,ni

li,j = A or li,j = ¬A

Tseitin’s Theorem: For every propositional formula, there exists
a polynomial size equisatisfiable formula in conjunctive normal form.

{A ∨ B, A ← (C → D), ¬(D ⊕ A), B ↔ D}

{A ∨ B, A ∨ ¬(¬C ∨ D), ¬((D ∨ A) ∧ ¬(D ∧ A)), (B ∧ D) ∨ (¬B ∧ ¬D)}

Conjunctive Normal Form (CNF)

{(A ∨ B), (A ∨ C), (A ∨ ¬D), (¬A ∨ D), (¬D ∨ A), (B ∨ ¬D), (D ∨ ¬B)}

Can find a satisfying assignment in polynomial time?

{A ∨ B, A ← (C → D), ¬(D ⊕ A), B ↔ D}

{A ∨ B, A ∨ ¬(¬C ∨ D), ¬((D ∨ A) ∧ ¬(D ∧ A)), (B ∧ D) ∨ (¬B ∧ ¬D)}

Conjunctive Normal Form (CNF)

{(A ∨ B), (A ∨ C) ∧ (A ∨ ¬D), (¬A ∨ D) ∧ (¬D ∨ A), (B ∨ ¬D) ∧ (D ∨ ¬B)}

{(A ∨ B), (A ∨ C), (A ∨ ¬D), (¬A ∨ D), (¬D ∨ A), (B ∨ ¬D), (D ∨ ¬B)}

Can find a satisfying assignment in polynomial time?

{A ∨ B, A ← (C → D), ¬(D ⊕ A), B ↔ D}

{A ∨ B, A ∨ ¬(¬C ∨ D), ¬((D ∨ A) ∧ ¬(D ∧ A)), (B ∧ D) ∨ (¬B ∧ ¬D)}

Conjunctive Normal Form (CNF)

{(A ∨ B), (A ∨ C) ∧ (A ∨ ¬D), (¬A ∨ D) ∧ (¬D ∨ A), (B ∨ ¬D) ∧ (D ∨ ¬B)}

{(A ∨ B), (A ∨ C), (A ∨ ¬D), (¬A ∨ D), (¬D ∨ A), (B ∨ ¬D), (D ∨ ¬B)}

A

¬B¬A

B C D

¬D¬C

Aspvall, Plass, Tarjan (1979): For any variable , the vertices for and exist in a
strongly connected component of the implication graph if and only if the set is not satisfiable.

X X ¬X

Davis–Putnam–Logemann–Loveland (DPLL) Algorithm

Input: CNF , and partial assignment f m

Chose an unassigned variable , and assign it .a b ∈ {0,1}

If , return DPLL (f, m[a → b]) = SAT m[a → b]

Else, return DPLL (f, m[a → 1 − b])

If is true under , return .f m m
If is false under , return .f m ⊥

If unit literal under , then return .∃ p m DPLL (f, m[p → 1])
If unit literal under , then return .∃ ¬p m DPLL (f, m[p → 0])

c1 = (¬x1 ∨ x2)

c2 = (¬x1 ∨ x3 ∨ x5)

c3 = (¬x2 ∨ x4)

c4 = (¬x3 ∨ ¬x4)

c5 = (x1 ∨ x5 ∨ ¬x2)

c6 = (x2 ∨ x3)

c7 = (x2 ∨ ¬x3 ∨ x7)

c8 = (x6 ∨ ¬x5)

c1 = (¬x1 ∨ x2)

c2 = (¬x1 ∨ x3 ∨ x5)

c3 = (¬x2 ∨ x4)

c4 = (¬x3 ∨ ¬x4)

c5 = (x1 ∨ x5 ∨ ¬x2)

c6 = (x2 ∨ x3)

c7 = (x2 ∨ ¬x3 ∨ x7)

c8 = (x6 ∨ ¬x5)

x6

x5

0

Davis–Putnam–Logemann–Loveland (DPLL) Algorithm

Input: CNF , and partial assignment f m

Chose an unassigned variable , and assign it .a b ∈ {0,1}

If , return DPLL (f, m[a → b]) = SAT m[a → b]

Else, return DPLL (f, m[a → 1 − b])

If is true under , return .f m m
If is false under , return .f m ⊥

If unit literal under , then return .∃ p m DPLL (f, m[p → 1])
If unit literal under , then return .∃ ¬p m DPLL (f, m[p → 0])

c1 = (¬x1 ∨ x2)

c2 = (¬x1 ∨ x3 ∨ x5)

c3 = (¬x2 ∨ x4)

c4 = (¬x3 ∨ ¬x4)

c5 = (x1 ∨ x5 ∨ ¬x2)

c6 = (x2 ∨ x3)

c7 = (x2 ∨ ¬x3 ∨ x7)

c8 = (x6 ∨ ¬x5)

x6

x5

x7

0

0,c8

Davis–Putnam–Logemann–Loveland (DPLL) Algorithm

Input: CNF , and partial assignment f m

Chose an unassigned variable , and assign it .a b ∈ {0,1}

If , return DPLL (f, m[a → b]) = SAT m[a → b]

Else, return DPLL (f, m[a → 1 − b])

If is true under , return .f m m
If is false under , return .f m ⊥

If unit literal under , then return .∃ p m DPLL (f, m[p → 1])
If unit literal under , then return .∃ ¬p m DPLL (f, m[p → 0])

c1 = (¬x1 ∨ x2)

c2 = (¬x1 ∨ x3 ∨ x5)

c3 = (¬x2 ∨ x4)

c4 = (¬x3 ∨ ¬x4)

c5 = (x1 ∨ x5 ∨ ¬x2)

c6 = (x2 ∨ x3)

c7 = (x2 ∨ ¬x3 ∨ x7)

c8 = (x6 ∨ ¬x5)

x6

x5

x7

x1

0

0,c8

0

c1 = (¬x1 ∨ x2)

c2 = (¬x1 ∨ x3 ∨ x5)

c3 = (¬x2 ∨ x4)

c4 = (¬x3 ∨ ¬x4)

c5 = (x1 ∨ x5 ∨ ¬x2)

c6 = (x2 ∨ x3)

c7 = (x2 ∨ ¬x3 ∨ x7)

c8 = (x6 ∨ ¬x5)

x6

x5

x7

x3

x1

0

0,c8

0

1

c1 = (¬x1 ∨ x2)

c2 = (¬x1 ∨ x3 ∨ x5)

c3 = (¬x2 ∨ x4)

c4 = (¬x3 ∨ ¬x4)

c5 = (x1 ∨ x5 ∨ ¬x2)

c6 = (x2 ∨ x3)

c7 = (x2 ∨ ¬x3 ∨ x7)

c8 = (x6 ∨ ¬x5)

x6

x5

x7

x3

x1

0

0,c8

0

1

1,c2

c1 = (¬x1 ∨ x2)

c2 = (¬x1 ∨ x3 ∨ x5)

c3 = (¬x2 ∨ x4)

c4 = (¬x3 ∨ ¬x4)

c5 = (x1 ∨ x5 ∨ ¬x2)

c6 = (x2 ∨ x3)

c7 = (x2 ∨ ¬x3 ∨ x7)

c8 = (x6 ∨ ¬x5)

x6

x5

x7

x3

x2

x1

x4

: conflictc4

0

0,c8

0

1

1,c2

1,c1

1,c3

Davis–Putnam–Logemann–Loveland (DPLL) Algorithm

Input: CNF , and partial assignment f m

Chose an unassigned variable , and assign it .a b ∈ {0,1}

If , return DPLL (f, m[a → b]) = SAT m[a → b]

Else, return DPLL (f, m[a → 1 − b])

If is true under , return .f m m
If is false under , return .f m ⊥

If unit literal under , then return .∃ p m DPLL (f, m[p → 1])
If unit literal under , then return .∃ ¬p m DPLL (f, m[p → 0])

c1 = (¬x1 ∨ x2)

c2 = (¬x1 ∨ x3 ∨ x5)

c3 = (¬x2 ∨ x4)

c4 = (¬x3 ∨ ¬x4)

c5 = (x1 ∨ x5 ∨ ¬x2)

c6 = (x2 ∨ x3)

c7 = (x2 ∨ ¬x3 ∨ x7)

c8 = (x6 ∨ ¬x5)

x6

x5

x7

x3

x2

x1

x4

: conflictc4

0

0,c8

0

1

1,c2

1,c1

1,c3

0
x2

0,c5

x3

1,c6
: conflictc7

c1 = (¬x1 ∨ x2)

c2 = (¬x1 ∨ x3 ∨ x5)

c3 = (¬x2 ∨ x4)

c4 = (¬x3 ∨ ¬x4)

c5 = (x1 ∨ x5 ∨ ¬x2)

c6 = (x2 ∨ x3)

c7 = (x2 ∨ ¬x3 ∨ x7)

c8 = (x6 ∨ ¬x5)

x6

x5

x7

x3

x2

x1

x4

: conflictc4

0

0,c8

0

1

1,c2

1,c1

1,c3

0
x2

0,c5

x3

1,c6
: conflictc7

1
⋮

An Extension:

p := A | p ∧ p | p ∨ p | ¬p

p := A | p ∧ p | p ∨ p | ¬p

A := (e = e)

An Extension:

p := A | p ∧ p | p ∨ p | ¬p

e := e ∽ ee ∈ ℝ ∪ V

∽ := + |−

A := (e = e)

An Extension:

An Example:

Are there such that can be satisfied?(x, y) p

p : ¬(x = 0) ∧ ((x + y = 3.5) ∨ (y − x = 2))

An Example:

p : ¬(x = 0) ∧ ((x + y = 3.5) ∨ (y − x = 2))

Are there such that can be satisfied?(x, y) p

A B C

An Example:

p : ¬(x = 0) ∧ ((x + y = 3.5) ∨ (y − x = 2))

Are there such that can be satisfied?(x, y) p

p′￼ : ¬A ∧ (B ∨ C)

An Example:

p : ¬(x = 0) ∧ ((x + y = 3.5) ∨ (y − x = 2))

Are there such that can be satisfied?(x, y) p

{A : 0, B : 1, C : 0}

{A : 0, B : 0, C : 1}

{A : 0, B : 1, C : 1}

p′￼ : ¬A ∧ (B ∨ C)

An Example:

p : ¬(x = 0) ∧ ((x + y = 3.5) ∨ (y − x = 2))

Are there such that can be satisfied?(x, y) p

{A : 0, B : 1, C : 1}

{(x, y) |x ≠ 0, x + y = 3.5, y − x = 2}

p′￼ : ¬A ∧ (B ∨ C)

An Example:

p : ¬(x = 0) ∧ ((x + y = 3.5) ∨ (y − x = 2))

Are there such that can be satisfied?(x, y) p

{A : 0, B : 1, C : 1}

{(0.75,2.75)}
{(x, y) |x ≠ 0, x + y = 3.5, y − x = 2}

p′￼ : ¬A ∧ (B ∨ C)

An Example:

p : ¬(x = 0) ∧ ((x + y = 3.5) ∨ (y + x = 2))

Are there such that can be satisfied?(x, y) p

{A : 0, B : 1, C : 1}

{(x, y) |x ≠ 0, x + y = 3.5, y + x = 2}

p′￼ : ¬A ∧ (B ∨ C)

An Example:

p : ¬(x = 0) ∧ ((x + y = 3.5) ∨ (y + x = 2))

Are there such that can be satisfied?(x, y) p

{A : 0, B : 1, C : 1}

{A : 0, B : 1, C : 0}

{A : 0, B : 0, C : 1}

p′￼ : ¬A ∧ (B ∨ C)

An Example:

p : ¬(x = 0) ∧ ((x + y = 3.5) ∨ (y + x = 2))

Are there such that can be satisfied?(x, y) p

{A : 0, B : 1, C : 1}

{A : 0, B : 1, C : 0}

{A : 0, B : 0, C : 1}

p′￼ : ¬A ∧ (B ∨ C)

Why does this work?

p : ¬(x = 0) ∧ ((x + y = 3.5) ∨ (y − x = 2))

Are there such that can be satisfied?(x, y) p

{A : 0, B : 1, C : 1}

{(0.75,2.75)}
{(x, y) |x ≠ 0, x + y = 3.5, y − x = 2}

p′￼ : ¬A ∧ (B ∨ C)

Why does this work?

p : ¬(x = 0) ∧ ((x + y = 3.5) ∨ (y − x = 2))

Are there such that can be satisfied?(x, y) p

{A : 0, B : 1, C : 1}

{(0.75,2.75)}
{(x, y) |x ≠ 0, x + y = 3.5, y − x = 2} Decidability of SLE

p′￼ : ¬A ∧ (B ∨ C)

Astrée

Part III: Automated Program Synthesis

Dream

User Intent

Dream

User Intent

Dream

Program
Synthesis

User Intent

Dream

Program
Synthesis

User Intent

Dream

How to describe?

Program
Synthesis

User Intent

Dream

How to describe? How to design?

Program
Synthesis

User Intent

Dream

How to describe? How to design? How to ensure?

Program
Synthesis

User Intent

Dream

Program
Synthesis

How to describe? How to design? How to ensure?

Specification Synthesis Verification

Complete
Mathematical
Specification

Program
Synthesis

 ∀x, y, z . (max(x, y, z) ≥ x) ∧ (max(x, y, z) ≥ y) ∧ (max(x, y, z) ≥ z)
∧ ((max(x, y, z) = x) ∨ (max(x, y, z) = y) ∨ (max(x, y, z) = z))

Verification

 ∀x, y, z . (max(x, y, z) ≥ x) ∧ (max(x, y, z) ≥ y) ∧ (max(x, y, z) ≥ z)
∧ ((max(x, y, z) = x) ∨ (max(x, y, z) = y) ∨ (max(x, y, z) = z))

Function of three numbers that returns their max.

Verification

Mathematical Specification

Natural Language

Input-Output Examples

Mathematical Specification

Natural Language

Input-Output Examples

max(1,2,4) = 4

max(8,3, − 4) = 8

max(10,10,1) = 10

max(1,6,4) = 6

Program
Synthesis

max(1,2,4) = 4
max(8,3, − 4) = 8
max(10,10,1) = 10

max(1,6,4) = 6

Program
Synthesis

max(1,2,4) = 4
max(8,3, − 4) = 8
max(10,10,1) = 10

max(1,6,4) = 6

Easy to describe Search Problem
Easy to automate and scale Easy to ensure!

Program
Synthesis

max(1,2,4) = 4
max(8,3, − 4) = 8
max(10,10,1) = 10

max(1,6,4) = 6

Easy to describe Search Problem
Easy to automate and scale Easy to ensure!

Correctness?

Program
Synthesis

max(1,2,4) = 4
max(8,3, − 4) = 8
max(10,10,1) = 10

max(1,6,4) = 6

Easy to describe Search Problem
Easy to automate and scale Easy to ensure!

Correctness?

Ambiguity?

Overfitting?

Program
Synthesis

max(1,2,4) = 4
max(8,3, − 4) = 8
max(10,10,1) = 10

max(1,6,4) = 6

Easy to describe Search Problem
Easy to automate and scale Easy to ensure!

Ambiguity!

Program
Synthesis

max(1,2,4) = 4
max(8,3, − 4) = 8
max(10,10,1) = 10

max(1,6,4) = 6

Easy to describe Search Problem
Easy to automate and scale Easy to ensure!

Overfitting!

Example-guided Synthesis
 of Relational Queries

Example-guided Synthesis
 of Relational Queries

declarative logic programs

Example-guided Synthesis
 of Relational Queries

declarative logic programs

PrologPQL LogiQL CodeQL

SQL Datalog SPARQLCypher

TIROS

Program Analysis Network Analysis Knowledge Discovery

Database Querying Industrial Applications

Input Tables

R1

R2

R3

Q
Query

?
Output

Querying

Example-guided Synthesis
 of Relational Queries

Query Synthesis

Input Tables

R1

R2

R3
Query

?
Output Table

O

?

Bongard problem 47

An Example
GreenSignal

Broadway

Liberty St

William St

Whitehall St

HasTraffic

Broadway

Wall St

William St

Whitehall St

An Example
GreenSignal

Broadway

Liberty St

William St

Whitehall St

HasTraffic

Broadway

Wall St

William St

Whitehall St

Crashes
Broadway

Whitehall St

An Example
GreenSignal

Broadway

Liberty St

William St

Whitehall St

HasTraffic

Broadway

Wall St

William St

Whitehall St

Crashes
Broadway

Whitehall St

Crashes(x) HasTraffic(x), isGreen(x),
	 	 Intersects(x, y),

	 HasTraffic(y), isGreen(y).

: −

Su
pe

rv
is

io
n

Expressiveness

PatSQL (2021)

Scythe (2017)

ProSynth (2020)

ALPS (2018)

ILASP (2020)

Metagol (2016)

Popper (2021)

Difflog (2019)

Zaatar (2017)

GenSynth (2021)

Su
pe

rv
is

io
n

Expressiveness

ProSynth (2020)

ALPS (2018)

ILASP (2020)

Metagol (2016)

Popper (2021)

Difflog (2019)

GenSynth (2021)

General Recursion

Su
pe

rv
is

io
n

Expressiveness

Metagol (2016)

GenSynth (2021)

Predicate Invention

Su
pe

rv
is

io
n

Expressiveness

PatSQL (2021)

Scythe (2017)

Numerical Comparison

Su
pe

rv
is

io
n

Expressiveness

PatSQL (2021)

Scythe (2017)

ProSynth (2020)

ALPS (2018)

ILASP (2020)

Metagol (2016)

Popper (2021)

Difflog (2019)

Zaatar (2017)

GenSynth (2021)

?

Su
pe

rv
is

io
n

Expressiveness

PatSQL (2021)

Scythe (2017)

ProSynth (2020)

ALPS (2018)

ILASP (2020)

Metagol (2016)

Popper (2021)

Difflog (2019)

Zaatar (2017)

GenSynth (2021)

EGS (2021)

Example-guided Synthesis
GreenSignal

Broadway

Liberty St

William St

Whitehall St

HasTraffic

Broadway

Wall St

William St

Whitehall St

Crashes
Broadway

Whitehall St

Crashes(x) HasTraffic(x), isGreen(x),
	 	 Intersects(x, y),

	 HasTraffic(y), isGreen(y).

: −

GreenSignal

Broadway

Liberty St

William St

Whitehall St

HasTraffic

Broadway

Wall St

William St

Whitehall St

HasTraffic,
IsGreen

Broadway

Wall St.

Interse
cts

Intersects

Intersects

Interse
cts

William

In
te

rs
ec

ts

HasTraffic

Liberty

Whitehall

HasTraffic,
IsGreen

HasTraffic,
IsGreen

IsGreen

Example-guided Synthesis

HasTraffic,
IsGreen

Broadway

Wall St.

Interse
cts

Intersects

Intersects

Interse
cts

William

In
te

rs
ec

ts

HasTraffic

Liberty

Whitehall

HasTraffic,
IsGreen

HasTraffic,
IsGreen

IsGreen

Crashes(x) HasTraffic(x), isGreen(x),
	 	 Intersects(x, y),

	 HasTraffic(y), isGreen(y).

: −

Example-guided Synthesis

Su
pe

rv
is

io
n

Expressiveness

PatSQL (2021)

Scythe (2017)

ProSynth (2020)

ALPS (2018)

ILASP (2020)

Metagol (2016)

Popper (2021)

Difflog (2019)

Zaatar (2017)

GenSynth (2021)

EGS (2021)

Su
pe

rv
is

io
n

Expressiveness

PatSQL (2021)

Scythe (2017)

ProSynth (2020)

ALPS (2018)

ILASP (2020)

Metagol (2016)

Popper (2021)

Difflog (2019)

Zaatar (2017)

GenSynth (2021)

EGS (2021)
Mobius (2023)

scc(x, y) path(x, y), path(y, x).
path(x, y) edge(x, y).

path(x, y) path(x, z), path(z, y).

: −
: −

: −

a b c e f

d

Su
pe

rv
is

io
n

Expressiveness

PatSQL (2021)

Scythe (2017)

ProSynth (2020)

ALPS (2018)

ILASP (2020)

Metagol (2016)

Popper (2021)

Difflog (2019)

Zaatar (2017)

GenSynth (2021)

EGS (2021)
Mobius (2023) Libra (2023)

CENTRE FOR

Data Sciences and
Analytics

CENTER FOR

Digitalisation, AI, and
Society

Koita Centre for
Digital Health

SAFEXPRESS CENTRE FOR

Data, Learning, and
Decision Sciences

Centre for Data,
Learning, and

Decision Sciences

Comprehensive Data Lake Framework:

1. Repository of multimodal across

interdisciplinary fields

2. Metadata of open source/public data

3. Unified access and integration

4. Inference, versioning, and provenance

Centre for
Digitisation, AI,

and Society

Centre for
Economic Data

and Analysis

Centre for Health
Analytics, Research
and Trends (CHART)

A
ll

C
en

tr
es

 w
ill

 u
se

 C
D

A
 a

s
it

s
in

fr
as

tr
uc

tu
ra

l f
ou

nd
at

io
n

Koita Centre
for Digital Health

CENTRE FOR

Data Sciences and
Analytics

Climate

Ecology

Astronomy

Nutrition and Food

Languages

Agriculture

Traffic and Pollution

Epidemiology

History

Health

GIS

SAFEXPRESS CENTRE FOR

Data, Learning, and
Decision Sciences

• Data-driven quantitative modelling

(weather, epidemiology, cultural

behaviour)

• Financial Mathematics (risk,

pricing, optimisation)

• Reinforcement Learning

• Automated Reasoning

Building AI (with guarantees) as a tool

CENTER FOR

Digitalisation, AI, and
Society

25 crore
linked health records

36 crore
daily transactions

120 crore
biometric records

Voting Protocols and Their Properties

Electronic Voting

Privacy and Integrity of Electoral Rolls

Applications of Blockchains

Digitalisation in Healthcare Cryptocurrency Regulation

Computational Techniques for Census AI for Social Good

Ethics of ComputingRobust, Fair, and Explainable AI

AI as an agent, and its
interaction with society

IndiaAI Mission, Responsible AI (2021)

Brazilian Artificial Intelligence Strategy (EBIA)

Russia: National AI Strategy

South Africa: National AI Plan

China: New Generation AI Development Plan

Koita Centre for
Digital Health

AI + Health Data
● Developing a health data & analytics ecosystem for

preventive and personalised medicine
● Ethical, purpose based, privacy preserving health

data architectures that promote appropriate uses,
while minimising risks to individuals

● Use of LLMs to empower citizens & public
institutions with fit-for-purpose information

Personal Health & Wellness
● Generation and use of

personalised health data to
identify risks, promote
wellness, and reinforce
healthy behaviour

● Genetic disease screening
● Use of wearables &

healthcare apps

Intersections
● Assessing impact of food

choices on health
● Promoting appropriate

choices in foods
● Learning from history of

medicine for digital health/
AI policy

Precision Public Health
● Integrating multi-modal

information for multi-scale
precision health

● Population cohorts,
convenience cohorts,
biobanks

● Precision Medicine and
Precision Public Health

CENTRE FOR

Data Sciences and
Analytics

CENTER FOR

Digitalisation, AI, and
Society

Koita Centre for
Digital Health

SAFEXPRESS CENTRE FOR

Data, Learning, and
Decision Sciences

aalok.thakkar@ashoka.edu.in
aalok-thakkar.github.io

Aalok Thakkar

