
Languages, Automata, and Logic

Wolfgang Thomas

�

May 1996

Bericht 9607

Institut f�ur Informatik und Praktische Mathematik

der Christian-Albrechts-Universit�at zu Kiel

D-24098 Kiel

�

E-Mail: wt@informatik.uni-kiel.de

Work supported by ESPRIT BRA Working Group No. 6317 ASMICS 2 (\Alge-

braic and Syntactic Methods in Computer Science") and Deutsche Forschungs-

gemeinschaft (DFG Th 352/3-1).

Abstract

This paper is a survey on logical aspects of �nite automata. Central points

are the connection between �nite automata and monadic second-order logic, the

Ehrenfeucht-Fra��ss�e technique in the context of formal language theory, �nite

automata on !-words and their determinization, and a self-contained proof of

the \Rabin Tree Theorem".

Sections 5 and 6 contain material presented in a lecture series to the \Final

Winter School of AMICS" (Palermo, February 1996). A modi�ed version of the

paper will be a chapter of the \Handbook of Formal Language Theory", edited

by G. Rozenberg and A. Salomaa, to appear in Springer-Verlag.

Keywords: Finite automata, monadic second-order logic, �rst-order logic,

regular languages, star-free languages, tree automata, Ehrenfeucht-Fra��ss�e game,

!-automata, temporal logic, B�uchi automata, Rabin tree automata, determinacy,

decidable theories.

Contents

1 Introduction 1

2 Models and Formulas 2

2.1 Words, Trees, and Graphs as Models 3

2.2 First-Order Logic . 4

2.3 Monadic Second-Order Logic . 6

3 Automata and MSO-Logic on Finite Words and Trees 8

3.1 MSO-Logic on Words . 8

3.2 MSO-Logic on Traces and Trees 13

4 First-Order De�nability 17

4.1 The Ehrenfeucht-Fra��ss�e Game . 17

4.2 Locally Threshold Testable Sets 21

4.3 Star-Free Languages . 24

5 Automata and MSO-Logic on In�nite Words 28

5.1 !-Automata . 28

5.2 Determinization of !-Automata 31

5.3 Applications to De�nability and Decision Problems 37

6 Automata and MSO-Logic on In�nite Trees 43

6.1 Automata on In�nite Trees . 44

6.2 Determinacy and Complementation 47

6.3 Applications to Decision Problems of MSO-Logic 57

Acknowledgment 62

References 62

i

1 Introduction

The subject of this chapter is the study of formal languages (mostly languages

recognizable by �nite automata) in the framework of mathematical logic.

The connection between automata and logic goes back to work of B�uchi [B�u60]

and Elgot [Elg61], who showed that �nite automata and monadic second-order

logic (interpreted over �nite words) have the same expressive power, and that the

transformations from formulas to automata and vice versa are e�ective. Later, in

work of B�uchi [B�u62], McNaughton [McN66], and Rabin [Rab69], such an equiv-

alence was shown also between �nite automata and monadic second-order logic

over in�nite words and trees. This research was initiated by decision problems

for restricted systems of arithmetic and the problem of synthesizing circuits with

nonterminating behaviour from logic speci�cations ([Chu63], [TB73]). The reduc-

tion of formulas to �nite automata was the key to the solution of both problems:

The monadic second-order theories S1S and S2S of one, respectively two successor

functions were shown to be decidable in [B�u62] and [Rab69], leading to decidabil-

ity results also for other interesting mathematical theories and for several logics

of programs. Furthermore, it turned out (in the work of B�uchi and Landweber

[BL69]) that the circuit synthesis problem with respect to S1S-speci�cations is

solvable e�ectively, which gave a new perspective to the automatic construction

of nonterminating programs.

In the eighties, the bridge between the descriptive formalism of monadic

second-order logic and the computational (or operational) model of �nite au-

tomaton was re�ned and extended to allow practical use. Temporal logics and

�xed-point logics took the role of the speci�cation languages (replacing the classi-

cal systems of �rst-order logic and monadic second-order logic), and more e�cient

transformations from logic formulas to automata were found. This led to power-

ful algorithms and software systems for the veri�cation of �nite-state programs

(\model-checking"). The area has developed into an own subject, built on an ex-

tensive literature which cannot be covered here in detail; as recent monographs

in the �eld we mention [McM93], [Arn94a], and [Kur94].

The equivalence between automata and logical formalisms also started new

tracks of research in language theory itself. For example, the classi�cation theory

of formal languages was deepened by including logical notions and techniques,

and the logical approach helped in generalizing language theoretical results from

the domain of words to more general structures like trees and partial orders.

The logical description of the behaviour of computational models was also

taken up in complexity theory. Starting from Fagin's work [Fag74], it was shown

that many complexity classes, such as NP, P, PSPACE, could be characterized

by di�erent versions of second-order logic (involving, for example, �xed point

operators or transitive closure operators). This theory now forms the core of the

subject �nite model theory or (more speci�cally) descriptive complexity theory,

and we refer the reader to [EF95] for a recent and comprehensive exposition.

1

The topic of the present chapter, where �nite automata are considered rather

than resource-bounded Turing machines, may be called a descriptive theory of

recognizability. In the logical framework, this corresponds to restricting second-

order logic (as used in describing classical complexity classes) to its monadic (or

even �rst-order) fragment.

A surprising merge of techniques and results from automata theory, logic, and

complexity was �nally achieved in circuit complexity theory, where the compu-

tational power of boolean circuits is studied, regarding restrictions in their size,

depth, and types of allowed gates. It turned out that natural families of circuits

(given by such bounds on size and depth) can be described by generalized mod-

els of �nite automata as well as by appropriate systems of �rst-order logic. In

Straubing's book [Str94] these results are developed in detail, including algebraic

aspects (concerning, e.g., varieties of monoids associated with regular languages).

The main objective of this survey is to explain the precise relation between

�nite automata and monadic second-order logic and to give self-contained proofs

of some fundamental results. This will include certain di�cult automata the-

oretic constructions over in�nite words and trees, e.g. Safra's determinization

of !-automata [Saf88] and Rabin's Tree Theorem [Rab69], which are as yet not

accessible in textbooks or surveys, as well as a short exposition of the Ehrenfeucht-

Fra��ss�e game technique and some of its applications concerning �rst-order logic

in formal language theory. Thus, some complementary material to the related

survey paper [Th90] is given. On the other hand, only short remarks will be

made on the neighbour subjects mentioned above, for which the reader can refer

to the cited monographs.

2 Models and Formulas

Let us start with a simple example to explain the description of formal languages

by logical formulas. The �nite automaton

a

a

c

a

c

b

accepts those words over the alphabet A = fa; b; cg where no a is succeeded by

a b, any b is succeeded by a, and a is the last letter. These three conditions can

be expressed by a �rst-order formula, using variables x; y; : : : for letter positions,

2

a formula S(x; y) to indicate that position y succeeds x, and Q

a

(x) to formalize

that position x carries letter a:

'

1

: :9x9y(S(x; y)^Q

a

(x) ^Q

b

(y)) ^ 8x(Q

b

(x)! 9y(S(x; y) ^Q

a

(y)))

^ 9x(:9yS(x; y)^Q

a

(x))

Note that :9yS(x; y) expresses that x is the last letter position of the word under

consideration.

Another example shows that variables X;Y; : : : ranging over sets of positions

(and corresponding atomic formulas X(y), meaning \y 2 X") can be useful.

Consider the set of words over A = fa; bg where any two occurrences of b (such

that no further b occurs between them) are separated by a block of an odd number

of letters a. It su�ces to express that for any two occurrences of b without a

further b between them there is a set of positions containing the position of the

�rst b, then every second position, and �nally the position of the next b:

'

2

: 8x8y(Q

b

(x) ^ x < y ^Q

b

(y) ^ 8z(x < z ^ z < y ! :Q

b

(z))

! 9X(X(x) ^ 8u8v(S(u; v)! (X(u)$:X(v))) ^X(y)))

In the remainder of the section we introduce the framework for the de�nition of

formal languages more precisely. We include also more general structures than

words, in particular labelled trees and graphs.

2.1 Words, Trees, and Graphs as Models

Let A be a �nite alphabet and let w = a

0

: : : a

n�1

be a word over A. The word

w is represented by the relational structure

w = (dom(w); S

w

; <

w

; (Q

w

a

)

a2A

)

called the word model for w, where dom(w) = f0; : : : ; n�1g is the set of (letter)

positions of w (the \domain" of w), S

w

is the successor relation on dom(w) with

(i; i+1) 2 S

w

for 0 � i < n� 1, <

w

is the natural order on dom(w), and the Q

w

a

are unary predicates, collecting for each label a the letter positions of w which

carry a: Thus Q

w

a

= fi 2 dom(w) j a

i

= ag. A word model w can be viewed as

a vertex labelled graph with edge relation S

w

(that induces the linear ordering

<

w

). The relations S

w

, <

w

are called numerical, while the unary relations Q

w

a

are called letter predicates.

This framework is easily adapted to !-words over a given alphabet A, i.e., to

sequences � = a

0

a

1

: : : with a

i

2 A. The corresponding structures � are of the

form

� = (!; S

�

; <

�

; (Q

�

a

)

a2A

)

where the domain is �xed as the set ! = f0; 1; 2; : : : g of natural numbers.

Another generalization is to include trees. We shall restrict ourselves to proper

binary trees, in which each node is either a leaf or has two successors (being

3

ordered as left and right successor). This saves notation but covers all typical

features arising with trees. Thus, nodes of trees will be represented as �nite

words over the alphabet f0; 1g (where 0 means \branch left" and 1 means \branch

right"), and tree domains will be pre�x closed subsets P of f0; 1g

�

, such that for

any word w 2 P either both or none of w0; w1 also belong P .

A tree over the alphabet A is a map t : dom(t) ! A where dom(t) is a tree

domain. The corresponding relational structure has the form

t = (dom(t); S

t

0

; S

t

1

; <

t

; (Q

t

a

)

a2A

):

Here S

t

0

; S

t

1

are the left, respectively right successor relations over dom(t) (with

(u; u0) 2 S

t

0

and (u; u1) 2 S

t

1

for u; u0; u1 2 dom(t)), <

t

is the proper pre�x

relation over dom(t), and Q

t

a

= fu 2 dom(t) j t(u) = ag. We say that a tree is

�nite if its domain is �nite; as in�nite trees over A we shall consider only the full

binary trees, i.e., maps from f0; 1g

�

to A. We denote by T

A

the set of �nite trees

over A, and by T

!

A

the set of in�nite (full binary) trees over A.

A further step of generalization is to consider vertex- and edge-labelled di-

rected graphs. Usually, the vertex labels will be from an alphabet A, and the edge

labels from an alphabet B. The vertex set is partitioned into sets Q

a

(collecting

the vertices with label a, respectively), and the edge set is partitioned into sets E

b

(collecting the edges labelled b, respectively). Thus, graphs will be represented

in the form

G = (V; (E

G

b

)

b2B

; (Q

G

a

)

a2A

);

where the Q

G

a

are disjoint sets with

S

a2A

Q

G

a

= V and the E

G

b

are disjoint subsets

of V � V . In acyclic graphs, a partial order (the reexive transitive closure of

E :=

S

b2B

E

G

b

) may be added. Tree models and word models arise then as special

cases: For trees, V is a tree domain and there are two labels on edges, indicating

transition to left and right successor; for words, there is only one label for the

edge relation (which coincides with the successor relation).

When no confusion arises we cancel the superscripts w, �, t,G for the relations

and just speak, for instance, of the successor relation S or the ordering <.

Two versions of graphs which are important in a generalized theory of formal

languages are Mazurkiewicz trace graphs ([DR95]) and texts ([ER93]). Trace

graphs arise from words by a \dependence relation" on the alphabet, and texts

are obtained from words by introducing a second (arbritrary) successor relation.

More details will be given later in this chapter in connection with results related

to these structures.

2.2 First-Order Logic

Properties of words, trees, or graphs can be formalized in logical languages. We

begin with the �rst-order language.

4

Consider word models over the alphabet A. The corresponding �rst-order

language has variables x; y; : : : ranging over positions in word models, and is

built up from atomic formulas of the form

x = y; S(x; y); x < y; Q

a

(x) for a 2 A

by means of the connectives :;^;_;!;$ and the quanti�ers 9 and 8. The set of

used relation symbols S;<;Q

a

is called the signature of this �rst-order language.

(The equality sign = is tacitly assumed present.) The notation '(x

1

; : : : ; x

n

)

indicates that in the formula ' at most the variables x

1

; : : : ; x

n

occur free (i.e., not

in the scope of some quanti�er). A sentence is a formula without free variables.

If p

1

; : : : ; p

n

are positions from dom(w), then (w; p

1

; : : : ; p

n

) j= '(x

1

; : : : ; x

n

)

means that ' is satis�ed in w when =; S;<;Q

a

are interpreted by equality,

S

w

; <

w

; Q

w

a

, respectively, and p

1

; : : : ; p

n

serve as interpretations of x

1

; : : : ; x

n

,

respectively. The empty model is usually excluded in the framework of math-

ematical logic. In the sequel we allow the empty word � as member of formal

languages, and admit the empty model as interpretation of sentences. The nat-

ural convention that � satis�es universal sentences 8x'(x) but does not satisfy

existential sentences 9x'(x) �xes the satisfaction relation between � and sentences

'.

The language de�ned by the sentence ' is L(') = fw 2 A

�

j w j= 'g.

Similarly, the !-language de�ned by ' is L

!

(') = f� 2 A

!

j � j= 'g. For

the example sentence '

2

of the introduction of this section, L

!

('

2

) contains all

!-words over fa; bg where between any two (successive) occurrences of b there is

an odd number of letters a.

We say that a language L � A

�

(resp. !-language L � A

!

) is FO[S;<]-

de�nable (or �rst-order de�nable) if a �rst-order sentence ' as above exists with

L = L(') (resp. with L = L

!

(')). Similarly, by FO[S]-de�nability we mean

the existence of such a sentence in which no use is made of <. Note that in the

�rst case we may as well drop the symbol S for successor since S(x; y) can be

expressed in terms of < by the formula x < y ^ :9z(x < z ^ z < y).

In the de�nition of word properties, it is often convenient to allow predicates

�rst(x) and last(x) which apply only to the �rst, respectively last position (if

it exists) of a word model. Thus, �rst(x), last(x) will stand for the formulas

:9yS(y; x) and :9yS(x; y), respectively. (If < is used, replace S by <.) If

only nonempty words are considered, there is the alternative to introduce special

constants min and max denoting the �rst, respectively last element of a word

model (which exist by the non-emptiness assumption).

In an analogous way, �rst-order formulas over tree models and graph models

are introduced. The signature is adapted accordingly, along with the interpre-

tation of its relation symbols. So for (binary) trees we use the relation symbols

S

1

; S

2

for the two successor relations, and < stands now for the partial order of

the proper pre�x relation over tree domains. By T ('), resp. T

!

('), we denote

5

the set of �nite, resp. in�nite trees (over a given alphabet A) which satisfy the

sentence '.

Sometimes it is convenient to use function symbols rather than relation sym-

bols, for example the symbols suc, suc

0

, suc

1

for successor functions instead

of S, S

0

, S

1

as introduced above. This allows shorter formalizations espe-

cially if compositions of functions are considered. For example, one can write

y = suc(suc(suc(x))) instead of 9z

1

9z

2

(S(x; z

1

) ^ S(z

1

; z

2

) ^ S(z

2

; y)). However,

our general considerations would become more complicated with function sym-

bols, e.g. a convention would be necessary for the assignment of a successor to

the last position of a word (or alternatively, partial functions would have to be

admitted). Since it is always possible to eliminate function symbols in terms of

relation symbols (for the graphs of the functions under consideration), we shall

restrict to the relational case in the sequel.

Over graphs, the edge relation symbols E

b

take the role of the successor

relation symbols S; S

0

; S

1

. Thus, given the label alphabets A (for vertices) and B

(for edges), the atomic formulas of the associated �rst-order language are x = y,

E

b

(x; y), and Q

a

(x).

We shall use some standard results of quanti�er logic, especially the prenex

normal form into which each (�rst-order) formula can be transformed. Here a

pre�x of quanti�ers precedes a quanti�er-free kernel. If successive quanti�ers of

the same type are grouped into n blocks, beginning say with existential quanti-

�ers, such a formula has the form

9x

1

8x

2

: : :9=8x

n

'

0

(x

1

; x

2

; : : : x

n

)

with tuples x

i

of variables and quanti�er-free '

0

. Such a formula is called a

�

0

n

-formula. By a �

0

n

-formula we mean the dual case, i.e., a formula where

there are n alternating blocks of quanti�ers beginning with a block of universal

quanti�ers. By the laws of quanti�er logic, the negation of a �

0

n

-formula can

be written as a �

0

n

-formula. Boolean combinations of �

0

n

-formulas will be called

B(�

0

n

)-formulas. The superscript 0 indicates that the classi�cation according to

�rst-order quanti�ers is considered (and may be omitted if this context is clear);

a superscript 1 refers to the classi�cation by second-order quanti�ers.

2.3 Monadic Second-Order Logic

We extend the logical formalism by second-order variables X;Y; : : : ; X

1

; : : :

which range over sets of elements of models, i.e. sets of letter positions, sets of

tree nodes, sets of graph vertices. Corresponding atomic formulasX(x),X(y); : : :

are also introduced, with the intended meaning \x belongs to X", \y belongs to

X", etc. Since sets are \monadic second-order objects" , in contrast to relations

of higher arity (which are \polyadic"), the resulting system is called monadic

second-order logic, short MSO-logic.

6

Again, for second-order formulas a prenex normal form exists. Here one can

shift all second-order quanti�ers in front of �rst-order quanti�ers, by taking sin-

gletons as representations of elements. For example, 8x9Y '(x; Y) is equivalent to

8X9Y 8u8v8x((X(u)^X(v)! u = v) ^ (X(x)! '(x; Y))). Now a �

1

n

-formula

is a formula where a pre�x of n second-order quanti�er blocks, starting with

existential quanti�ers, precedes a formula where at most �rst-order quanti�ers

occur. �

1

1

-formulas of MSO-logic are also called existential monadic second-order

formulas, short EMSO-formulas.

Note that in MSO-logic the order relation < over words becomes de�nable in

terms of successor S: We have (over word models) the equivalence between x < y

and

:x = y ^ 8X(X(x) ^ 8z8z

0

(X(z) ^ S(z; z

0

)! X(z

0

))! X(y)):

We obtain that any FO[<]-de�nable word language is also MSO[S]-de�nable (and

henceforth we just say \MSO-de�nable"). Over trees, a similar de�nition in terms

of S

0

; S

1

can be given for the partial tree order < (the proper pre�x relation over

dom(t) for a given tree t).

In the study of monadic second-order logic we shall use a modi�ed logical

system of same expressive power, which we call MSO

0

-logic. It has a simpler

syntax, in which the �rst-order variables are cancelled. As for the prenex normal

form of MSO-formulas, the idea is to simulate (quanti�ers over) elements by

(quanti�ers over) singletons. Thus fxg � X will replace X(x). There are new

atomic formulas in MSO

0

-logic, namely (given the label alphabet A)

X � Y; Sing(X); Suc(X;Y); X � Q

a

(for a 2 A)

meaning that X is a subset of Y , X is a singleton, X, Y are singletons fxg, fyg

with S(x; y), and X is a subset of Q

a

, respectively.

The translation from MSO- to MSO

0

-logic is easy by induction over the con-

struction of MSO-formulas. For example,

8x(Q

a

(x)! 9y(S(x; y)^ Z(y)))

is rewritten as

8X(Sing(X) ^X � Q

a

! 9Y (Sing(Y) ^ Suc(X;Y) ^ Y � Z)):

Over trees and graphs, we would use formulas Suc

i

(X;Y) and E

b

(X;Y) instead

of Suc(X;Y).

An MSO-formula '(X

1

; : : : ;X

n

) with at most the free variables X

1

; : : : ;X

n

is interpreted in a word model (tree model, graph) with n designated subsets

P

1

; : : : ; P

n

. Such a model represents a word (tree, graph) over the expanded

alphabet A

0

= A � f0; 1g

n

, where the label (a; c

1

; : : : ; c

n

) of position p (node p,

vertex p) indicates that p carries label a fromA and that p belongs to P

j

i� c

j

= 1.

For instance, the !-word model (�;P

1

; P

2

) where � = abbaaaa : : : , P

1

is the set

of even numbers, and P

2

is the set of prime numbers, will be identi�ed with the

following !-word over fa; bg � f0; 1g

2

, where letters are written as columns:

7

� a b b a a a a

P

1

1 0 1 0 1 0 1 � � �

P

2

0 0 1 1 0 1 0

In the sequel we shall often use such identi�cation of set expansions of models

with models over extended alphabets.

It is worth mentioning that in the logical framework there is no essential

di�culty in transferring de�nability notions from the domain of words to the

more extended domains of trees and graphs, and that also the transition from

�nite models to in�nite models does not involve any conceptual problem. It is

only necessary to adapt the signature under consideration and to change the class

of admitted models. For de�nability notions from formal language theory, which

are based on automata, grammars, or regular expressions, such generalizations

are more involved, and sometimes only possible with additional conventions that

need special justi�cation. In this sense the logical approach may serve as a

support and guideline for generalizing classical formal language theory.

3 Automata and MSO-Logic on Finite Words

and Trees

3.1 MSO-Logic on Words

To specify recognizable (i.e., regular) languages, we refer to nondeterministic au-

tomata over an alphabet A, which are presented in the form A = (Q;A; q

0

;�; F)

where Q is the �nite state set, A is the input alphabet, q

0

the initial state,

� � Q � A � Q the transition relation, and F the set of �nal states. A word

w = a

0

: : : a

n�1

is accepted by A if there is a successful run of A on w, i.e. a

sequence � = �(0) : : : �(n) of states with �(0) = q

0

, (�(i); a

i

; �(i + 1)) 2 � for

i < n, and �(n) 2 F . The language recognized by A collects all words over A

accepted by A.

Theorem 3.1 (B�uchi [B�u60], Elgot [Elg61]) A language of �nite words is rec-

ognizable by a �nite automaton i� it is MSO [S]-de�nable, and both conversions,

from automata to formulas and vice versa, are e�ective.

Proof. To show the direction from left to right, let A = (Q;A; q

0

;�; F) be

a �nite automaton. Assume Q = f0; : : : ; kg where q

0

= 0. We have to �nd a

monadic second-order sentence that expresses in any given word model w (over

A) that A accepts w. Over a word w = a

0

: : : a

n�1

, the sentence will state the

existence of a successful run p

0

; : : : ; p

n

of A, i.e. with p

0

= 0, (p

i

; q

i

; p

i+1

) 2 �

for i < n, and p

n

2 F . We may code such a state sequence up to p

n�1

by a tuple

(X

0

; : : : ;X

k

) of pairwise disjoint subsets of f0; : : : ; n� 1g such that X

i

contains

those positions of w where state i is assumed. (A more e�cient coding would use

8

a correspondence between states and 0-1-vectors of suitable length, which allows

to describe a run over 2

m

states by an m-tuple of subsets of the word domain.)

From the last state p

n�1

the automaton should be able to reach a �nal state via

the word's last letter a

n�1

. Thus, A accepts the nonempty word w i�

w j= 9X

0

: : :9X

k

(

V

i 6=j

8x:(X

i

(x) ^X

j

(x))

^ 8x(�rst(x)! X

0

(x))

^ 8x8y(S(x; y)!

W

(i;a;j)2�

(X

i

(x) ^Q

a

(x) ^X

j

(y)))

^ 8x(last(x)!

W

9j2F :(i;a;j)2�

(X

i

(x) ^Q

a

(x)))

The empty word satis�es this sentence (with X

i

= ;). Thus, if A does not accept

�, a corresponding clause (such as 9x x = x) should be added.

Let us show the direction from right to left. Here we refer to the MSO

0

-

formulas introduced in the previous section and show the claim by induction on

these formulas. We have to exhibit for any given formula '(X

1

; : : : ;X

n

) a �nite

automaton which accepts precisely those words w 2 A� f0; 1g

n

which satisfy '.

(Recall that such words are represented by word models (w;P

1

; : : : ; P

n

).) It is

easy to present �nite automata that recognize the sets de�ned by atomic formulas

X

j

� X

k

, Sing(X

j

), Suc(X

j

;X

k

), and X

j

� Q

a

. E.g., the �nite automaton

checking whether X

j

� X

k

holds in w 2 (A�f0; 1g

n

)

�

has to verify that whenever

1 occurs in the j-th additional 0-1-component it occurs also in the k-th additional

0-1-component.

For the inductive step, it su�ces to consider the connectives :;_ and the exis-

tential set quanti�cation, since the other connectives and the universal set quan-

ti�er are de�nable in terms of them. This in turn amounts to the proof that the

class of recognizable languages shares well-known closure properties, namely clo-

sure under complement, under union, and under projection. Let us discuss the lat-

ter case: Assuming that the language de�ned by the formula (X

1

; : : : ;X

n

) over

the alphabet A�f0; 1g

n

is recognized by the automaton A, we have to exhibit an

automaton corresponding to the formula '(X

1

; : : : ;X

n�1

) = 9X

n

 (X

1

; : : : ;X

n

).

The required automaton (over A�f0; 1g

n�1

) just has to guess (by nondetermin-

ism) a 0-1-sequence which should de�ne the n-th additional components and has

to work on this extended word over A� f0; 1g

n

like A. 2

The formula in the above proof, describing acceptance of the underlying word

model by an automaton, is an EMSO-formula of a special type. Invoking the

second part of the proof, we see that it provides a normal form of MSO[S]-

formulas, in B�uchi's terminology an \automata normal form".

Corollary 3.2 Any MSO[S]-formula can be written as an EMSO[S]-formula.

In [Th82a] it is shown that even a single existential set quanti�er su�ces in

EMSO-formulas for de�ning recognizable languages.

9

The automata theoretic approach to monadic second-order logic yields a form

of quanti�er elimination, as is visible from the reduction of arbitrary formulas to

the mentioned automata normal form. As in classical logic, one derives from it

decidability results. Not all quanti�ers are eliminated here, but a normal form

is reached in which only existential set quanti�ers and (in the kernel) universal

�rst-order quanti�ers appear. (If the predicates \�rst" and \last" were expanded,

one �rst-order quanti�er alternation would have to be added.) Advantages of

the normal form are its strong closure properties (under boolean operations and

projection) and its algorithmic (or operational) meaning.

The potential to eliminate quanti�ers rests on the simultaneous closure of

the class of recognizable languages under projection (corresponding to existential

quanti�cation) and complement (allowing to treat the dual, universal quanti�-

cation). In the automata theoretic framework, this is usually shown via the

reduction of nondeterministic automata (which yield projection easily) to deter-

ministic automata (which yield complementation easily). Successive alternations

of quanti�ers thus amount to successive applications of the powerset construction

for automata. This means that (in the straightforward approach) each quanti�er

alternation induces an exponential blow-up of the size of corresponding �nite au-

tomata. Indeed, from results of Meyer and Stockmeyer (see [AHU74]) it follows

that, regarding computation time, a blow-up cannot be avoided: The time com-

plexity of any algorithm converting MSO-formulas (even FO[S;<]-formulas) to

equivalent �nite automata cannot be bounded by an elementary function (i.e. by

an iterated exponential of the form 2

^

(2

^

: : : (2

n

) : : :) in the length n of the given

formula). It is remarkable, however, that a conversion algorithm has been im-

plemented which allows nontrivial practical applications in hardware veri�cation

([BK95]).

In a corresponding reduction of MSO-logic to �nite automata over in�nite

words and in�nite trees, the determinization and complementation results are

more di�cult; this will be treated in Sections 5 and 6.

A natural generalization of MSO-logic is to admit second-order variables of

higher arity, i.e. variables ranging over relations, together with quanti�ers for

them. This leads to a much larger language class than the class of regular lan-

guages:

Theorem 3.3 (Fagin [Fag74]) A language belongs to the complexity class NP i�

it is de�nable in (general) existential second-order logic.

It follows that full second-order logic covers all languages in the polynomial

time hierarchy. Other second-order concepts, such as least �xed-point operator or

transitive closure operator, lead to logics which characterize further complexity

classes like P, NLOGSPACE, PSPACE. For these results of descriptive complexity

theory the reader should consult [EF95].

If only binary relations are admitted and restricted to so-called \matchings"

([LST95]), a characterization of the context-free languages is obtained. A relation

10

R � f0; : : : ; n � 1g

2

is called matching if it contains only pairs (i; j) with i < j

such that each position i belongs to at most one pair in R, and there are no

\crossings" between pairs (i.e., for (i; j), (k; l) 2 R, i < k < j implies i < k <

l < j). Typically, this kind of binary relation serves to de�ne Dyck languages, by

connecting positions where matching letters a

i

; a

i

occur.

Theorem 3.4 (Lautemann, Schwentick, Th�erien [LST95]) A language is con-

text-free i� it is de�nable in existential second-order logic where the second-order

variables range only over matchings.

We turn to some applications of Theorem 3.1 to decision problems and results

concerning de�nability of sets and relations over �nite words. B�uchi and Elgot

used the result to derive the decidability of the weak monadic second-order theory

of successor, sometimes denoted WS1S; it consists of all MSO-sentences which

are true in the structure (!; S;<) under the provision that set quanti�ers range

only over �nite sets. Indeed, any MSO-sentence ' with this interpretation is

equivalent to an input-free �nite automaton on �nite words, and truth of ' in

(!; S;<) amounts to the existence of a successful run of this automaton (which

is easily checked).

In [B�u60] and [Elg61] it was also noted that from the decidability of WS1S the

decidability of Presburger Arithmetic can be inferred, the set of true �rst-order

sentences in the structure (!;+). The idea is to represent numbers in binary, i.e.

as 0-1-words, and to view any 0-1-word as (characteristic function of) a �nite set.

It is convenient to write down the binary representations in reversed order, which

puts the i-th bit b

i

in the expansion �

l

i=0

b

i

2

i

to position i, yielding the word

b

0

: : : b

l

. Then, for example, the number 25 with reversed binary representation

10011 corresponds to the �nite set f0; 3; 4g. It is now easy to write down a

formula '(X

1

;X

2

;X

3

) which expresses that the (�nite) sets X

1

;X

2

;X

3

represent

numbers x

1

; x

2

; x

3

such that x

1

+ x

2

= x

3

: One describes the addition algorithm

which proceeds digit by digit (using successor to proceed to the next digit and the

existence of an auxiliary set for the carries). In this way, any �rst-order formula

'(x

1

; : : : ; x

n

) in the signature + is inductively transformed into a corresponding

weak MSO-formula '

0

(X

1

; : : : ;X

n

), using �nite-set quanti�ers in place of �rst-

order quanti�ers over numbers. The decidability of Presburger arithmetic follows

by applying this translation to �rst-order sentences in the signature + (without

free variables) and invoking decidability of WS1S.

Instead of translating Presburger formulas '(x

1

; : : : ; x

n

) into weak MSO-logic

one can proceed directly to �nite automata. An input for such an automaton is a

word over the alphabet f0; 1g

n

which stands for an n-tuple (k

1

; : : : k

n

) of numbers;

the sequence of the j-th components is the reversed binary representation of k

j

.

The length of the word is determined by the highest digit carrying a 1; if this

highest nonzero digit, say at position l, occurs with k

j

, the representations of

the k

m

with m 6= j are �lled from their highest nonzero digit with zeroes up to

this position l. A �nite automaton which scans such a word over f0; 1g

n

can

11

be viewed as an acceptor with one reading head per component, whose heads

move synchronously through the input. Thus one calls word relations recognized

by such automata synchronized rational relations ([FS93]). In the context of

numbers represented over base 2, one speaks of 2-recognizable relations of natural

numbers.

In B�uchi's work [B�u60], the question was considered which extension of Pres-

burger arithmetic would allow to de�ne precisely the 2-recognizable sets of natu-

ral numbers. In other words, how can one extend Presburger arithmetic to have

also a translation back into weak MSO-logic (or into �nite automata)? B�uchi

suggested to adjoin the predicate of being a power of 2, but it turned out that

slightly stronger arithmetical means are necessary, and in fact that the function

V

2

is appropriate which associates with each number m > 0 the greatest power

of 2 which divides m.

In general, one considers p-ary representations of natural numbers for any

p > 0 and the associated notion of a p-recognizable relation, using automata

working over the alphabet f0; : : : ; p � 1g

n

if the relation is n-ary. (Then the

1-recognizable sets of numbers are the ultimately periodic ones.) On the logical

side, one de�nes for p > 0 the function V

p

by

V

p

(m) = greatest power of p which divides m

for m > 0. Then the following equivalence result holds:

Theorem 3.5 (cf. [BHMV94])

A relation of natural numbers is p-recognizable i� it is �rst-order de�nable in the

structure (!;+; V

p

) (by a formula '(x

1

; : : : ; x

n

) if the relation is n-ary).

A deep theorem due to Cobham connects the notions of p- and q-

recognizability for di�erent p and q: A set of natural numbers which is both p- and

q-recognizable for multiplicatively independent p and q must be 1-recognizable,

hence ultimately periodic (see e.g. [Per90]). Here two numbers p, q are called

multiplicatively independent if there are no powers p

m

and q

n

(m;n > 0) which

coincide. A generalization of Cobham's Theorem, namely for relations instead of

sets of numbers, was obtained by Semenov and later given a very elegant proof

by Muchnik; for comprehensive expositions see the lucid survey [BHMV94] or

[MV96].

It is interesting to note that the expressive power of �nite automata which

recognize relations in an asynchronous manner (such that the reading heads on

di�erent components may be apart by arbitrary distances) is much greater than

in the synchronous case. For instance, while the class of synchronized rational

relations is captured by the weak MSO-logic of successor and thus closed under

boolean operations and projection, the application of boolean operations and pro-

jection to asynchronously recognized relations leads to nonrecursive relations, and

indeed one can exhaust in this way the arithmetical hierarchy of word-relations

12

and languages ([Sei92]). On the other hand, if the distance between the reading

heads is uniformly bounded, a reduction to synchronized mode is possible, even

over in�nite input words ([FS93]).

3.2 MSO-Logic on Traces and Trees

The mathematical core of Theorem 3.1 is the fact that the model of �nite au-

tomaton is closed under the operations of complementation and projection, or,

in logical terms, negation and existential quanti�cation. It is natural to ask over

which generalized structures (instead of �nite words) a similar theory of �nite

automata is possible, aiming at corresponding logical consequences.

In this section we discuss some basic classes of structures where such a gen-

eralization is possible.

The �rst is the class of (dependency graphs of) Mazurkiewicz traces, cf.

[DR95], [DM96]. Traces are formed over a dependence alphabet, which is a pair

(A;D) with an alphabet A and a reexive and symmetric \dependency relation"

D � A � A. Note that each letter is considered dependent on itself. We view

traces as special acyclic (and hence partially ordered) graphs whose vertices are

labelled in A and whose edge relation respects D in the sense that edges connect

only vertices carrying dependent letters and that any two vertices labelled by

dependent letters are connected by a path. Thus, by reexivity of D, an an-

tichain in a trace graph (i.e., a set of vertices which are pairwise unrelated by

the partial order) can have at most jAj elements. In order to obtain a canonical

representation, we keep in the edge set E only those edges that are present in the

Hasse diagram of the partial order (i.e., not generated by transitive closure from

other edges), and also include the generated partial order <. Thus a trace graph

has the form (V;E;<; (Q

a2A

)), such that the above-mentioned conditions on ver-

tices with dependent letters are satis�ed. A trace language is identi�ed with a

set of trace graphs over the given dependency alphabet (A;D). The notion of

MSO-de�nability for trace languages is now canonical.

On the other hand, it is nontrivial to set up a model of �nite automaton

which works in accordance with the idea of dependency and independency in-

herent in the de�nition of traces over an alphabet (A;D). Zielonka suggested in

[Zie87] the model of asynchronous �nite automaton. The idea is to decompose

the dependency alphabet into (possibly overlapping) maximal cliques w.r.t. the

dependence relation D; each such clique is called a \process". (For example, if

A = fa; b; c; dg and the dependency relation is generated by the pairs (a; b), (b; c),

(c; d), then these three pairs form three processes.) A run of an asynchronous

automaton on a trace is �xed by associating a number of states to each vertex: if

the vertex is labelled a then one state for each process to which letter a belongs

is listed. The transition relation now de�nes which state assignments for a vertex

are possible, taking into account its label a and the state assignments of the last

occurrences of vertices (in the partial order) where processes of a were involved.

13

In deterministic asynchronous automata the state assignment is uniquely deter-

mined by the state assignments of preceding vertices. An initial condition for

�rst vertices (with respect to <) and a �nal condition for the last ones is also

given. It turns out that recognizability by asynchronous automata also matches

the algebraic de�nition of recognizability and thus provides a robust and natural

notion (cf. [DR95]). The fundamental result on asynchronous automata states

that the nondeterministic and the deterministic version are expressively equiva-

lent ([Zie87]). Thus, the proof method of Theorem 3.1 can be applied, and one

obtains the following result, shown e.g. in [DR95]:

Theorem 3.6 A set of traces is recognizable by an asynchronous automaton i�

it is MSO-de�nable.

For certain rational trace languages, which transcend the class of recognizable

trace languages, Cho�rut and Guerra [CG95] found a logical characterization,

extending MSO-logic with formulas which allow to compare cardinalities of sets.

Over trees, the situation is somewhat easier, referring to the theory of �nite

tree automata (see e.g. [GS84] or the chapter on tree languages in this Hand-

book). We consider tree automata working in bottom-up (or frontier-to-root)

mode. In their transition relation, they can at each node only merge information

which is provided by the states assumed at the son nodes. There are no points

where information has to be kept along diverging branches which later may join

again (as it may happen in trace graphs).

De�nition 3.7 A tree automaton has the form A = (Q;A; q

0

;�; F) where Q is

�nite, q

0

2 Q, F � Q, and � � Q� A�Q �Q; a transition (q; a; q

0

; q

00

) allows

to proceed from two states q

0

; q

00

at the successor nodes of a node u to state q at

u while reading letter a as label of u. A run of A on an input tree t is built up in

the canonical way as a map � : dom(t)! Q, initialized for any leaf u labelled a

using a transition (q; a; q

0

; q

0

) (which leads to the assignment �(u) = q). The run

� is called successful if �(�) 2 F , and a tree is accepted if a successful run exists

on it. The tree language recognized by A consists of the trees accepted by A.

The classical subset construction works without essential change also for tree

automata of this form, which shows that over trees the nondeterministic and the

deterministic automaton model (in frontier-to-root mode) are equivalent. So the

method of Theorem 3.1 can be applied again:

Theorem 3.8 (Thatcher and Wright [TW68], Doner [Don70]) A set of �nite

trees is recognizable by a �nite tree automaton i� it is MSO-de�nable.

With the same argument as for MSO-logic on words, also over �nite trees

MSO-logic is equivalent in expressive power to EMSO-logic.

14

For the proof of Theorem 3.8, seemingly weaker quanti�ers than those ranging

over arbitrary subsets of tree domains su�ce. Let us call antichain a subset P

of a tree domain such that any two distinct nodes in P are incomparable by the

pre�x relation < (i.e. they do not belong to a common path). Antichain logic is

the restriction of monadic second-order logic where set quanti�cations range over

antichains only. Now we note that over proper binary trees (where each node has

either two successors or is a leaf), the inner nodes can be mapped injectively into

the set of leaves: From a given inner node we follow the path which �rst branches

right and then always branches left until a leaf is reached. Thus a set of inner

nodes can be coded by a set of leaves and hence by an antichain. Using this idea,

quanti�ers over subsets of proper binary trees can be simulated by quanti�ers

over antichains:

Proposition 3.9 ([PT93]) A set of proper trees (without unary branching) is

recognizable by a �nite tree automaton i� it is de�nable in antichain logic.

Similarly, chain logic is introduced; it allows only set quanti�ers ranging over

sets where any two elements are related via the partial pre�x order. As shown in

[Th84b], this system is strictly weaker than MSO-logic.

Theorem 3.8 allows to obtain decidability results for tree theories, as Theorem

3.1 does for theories of successor (i.e, fragments of arithmetic). In [TW68] and

[Don70], the weak monadic theory of the binary in�nite tree was shown to be

decidable, using the decidability of the emptiness problem for tree automata.

Dauchet and Tison [DT90] applied tree automata in the spirit of the decidabil-

ity proof for Presburger arithmetic (as discussed in the previous section). Here

an n-ary relation of �nite trees with label alphabet A is captured by a set of trees

over the alphabet A

n

(possibly extended by a dummy label in the individual com-

ponents if tuples of trees with di�erent domains are to be handled). In analogy to

the case of word relations, the j-th components code the j-th tree of the n-tuple.

Three relations between trees are considered in [DT90], each of them given by a

�nite tree rewriting system S (\ground rewriting system"): The �rst relation R

1

collects all tree pairs (s; t) such that t is obtained from s by application of a rule

from S, the second relation R

2

contains all pairs (s; t) where such rewriting steps

are applied in parallel, and the third, R

3

, is the transitive closure of R

1

. Now

the �rst-order theory of the ground rewrite system S is de�ned to be the set of

all �rst-order sentences in the signature with the relations R

1

; R

2

; R

3

which are

true about the domain of all trees over A with the relations R

i

determined by S

as explained above.

Inductively, each �rst-order formula '(x

1

; : : : ; x

n

) of this language can be

transformed into a tree automaton accepting those n-tuples of trees which satisfy

'. Hence the following result is obtained:

Theorem 3.10 ([DT90]) The �rst-order theory of any ground rewrite system is

decidable.

15

An interesting issue in present research is the problem of �nding more general

domains of graphs where the automata theoretic approach to MSO-logic works

again. These attempts are subject to limitations, however, for instance regarding

decidability results: There are natural classes of acyclic labelled graphs over which

even the satis�ability of EMSO-formulas is undecidable. The most basic example

is the class of \pictures" or \two-dimensional words", i.e. rectangular arrays of

labelled vertices which are connected by two successor relations, a horizontal and

a vertical one. It is easy to show that the halting problem for Turing machines is

reducible to satis�ability of EMSO-formulas over such pictures: For each Turing

machineM one can write down an EMSO-sentence '

M

, describing those pictures

that code a halting computation of M starting with the empty tape. (Such a

picture, say over the alphabet f0; 1g

k

, represents a halting computation in the

form of a two-dimensional space-time-diagram, such that all points visited by

M belong to the picture. Existential quanti�ers over sets X

1

; : : : ;X

k

serve to

express that an appropriate assignment of values from f0; 1g

k

to picture points

exists, while the local conditions on neighbour letters, as �xed by the Turing

machine instructions, are expressible in �rst-order logic.) Thus, satis�ability of

'

M

in the domain of pictures amounts to existence of a halting computation

of M starting on the empty tape, whence satis�ability of EMSO-sentences over

pictures is undecidable. For a detailed discussion of picture languages see [GR96].

Over the class of pictures, also other facts fail which are familiar from the

domain of words or trees. First, EMSO-logic turns out to be strictly weaker

than MSO-logic over pictures; for example, the set of (n � 2n)-dimensional pic-

tures which are composed from two identical square pictures is MSO-de�nable

but not EMSO-de�nable (cf. [GRST96]). Closely related is the fact that the

powerset construction fails for canonical models of �nite automata over pictures

and acyclic graphs (see [PST94], where a claim of [KS81] concerning applicability

of the powerset construction is corrected). Also in the domain of arbitrary �nite

graphs MSO-logic can be separated from EMSO-logic: Connectivity is an MSO-

expressible graph property which is not de�nable in EMSO-logic (cf. [FSV95]).

Some classes of graphs have been found where the classical technique of

connecting MSO-logic with notions of recognizability can be applied; usually,

however, this depends on the possibility to describe graph properties in terms

of certain tree properties. As an example we mention properties of texts, a

structure introduced in [ER93]. A text is a word which has a second order-

ing besides the natural ordering of letters. Alternatively, a text is presented as

a word together with a permutation of its positions, for example in the form

(acabaacbc; (5; 2; 4; 1; 3; 6; 7; 8; 9)). A text can be built up in a structured way,

combining parts of it in the form of a tree structure, called shape. Hoogeboom

and ten Pas showed in [HP94] that a natural algebraic notion of recognizability

and de�nability in MSO-logic coincide for text languages where these tree repre-

sentations involve only trees of bounded arity (i.e., can be handled by �nite tree

automata).

16

A more general framework of de�nability of graph properties (which implic-

itly involves terms and trees with unbounded arity) was developed by Courcelle

[Cou90]. It is based on the construction of graphs in a many-sorted graph algebra

and leads to an algebraic notion of recognizability of graph sets which is strictly

more expressive than MSO-logic. The �nitary framework of MSO-logic and tree

automata is exceeded by the admission of in�nitely many sorts in this graph

algebra, a feature which is necessary, for example, in the de�nition of picture

languages.

There is as yet no characterization of the classes of graphs which share the

desirable properties of the classical theory, namely a decidable satis�ability prob-

lem (or validity problem) for MSO-formulas, the equivalence between MSO-logic

and its existential part, EMSO-logic, as well as between MSO-logic and �nite-

state acceptors. An interesting class where this question is open is given by the

graphs of bounded tree-width; see [Cou91] and [See92] for a detailed treatment

and partial results in two complementary approaches.

A general method to construct sets of graphs from sets of trees is to apply

monadic second-order interpretations. An interpretation describes a relational

structure S (say, a graph) within a given structure R (say, a tree) by provid-

ing \de�ning formulas". One formula (with a free variable) de�nes a copy of

the domain of S within R, and further formulas are provided to de�ne the re-

lations of S as relations over that part of R which represents S. Seese [See92]

applies interpretations of graphs in trees and uses tree automata theory to obtain

decidability results, as well as upper time-bounds for computational graph prob-

lems. In [Cou94], the related notion of monadic second-order graph transduction

is studied. Sets of graphs which are generated by (di�erent versions of) context-

free graph grammars are shown to be presentable as images of recognizable tree

languages under such MSO-de�nable graph transductions. A detailed exposition

of these results and their applications is given in the survey [Cou96].

4 First-Order De�nability

4.1 The Ehrenfeucht-Fra��ss�e Game

The limited expressive power of �nite automata (and hence MSO-logic) over

words or trees is veri�ed conveniently using pumping lemmas and related com-

binatorial arguments. For �rst-order logic, the situation is more involved. The

most versatile method to show non-de�nability in systems of �rst-order logic is the

Ehrenfeucht-Fra��ss�e game, and it is applied in characterizations of several classes

of �rst-order de�nable languages. We give the main facts in a brief overview;

more background can be found e.g. in [EFT94] or [EF95].

In the sequel we consider a �rst-order language (with equality) for a signature

Sig with the unary relation symbols Q

1

; : : : ; Q

k

and the binary relation symbols

17

R

1

; : : : ; R

l

. The restriction to unary and binary relations is inessential but saves

notation and is enough for the present purposes. Letters Q and R will indicate

unary, resp. binary relation symbols. The structures for the signature Sig are of

the form S = (S;Q

S

1

; : : : ; Q

S

k

; R

S

1

; : : : ; R

S

l

) where S is the structure's universe,

Q

S

i

� S for 1 � i � k and R

S

j

� S � S for 1 � j � l. Sometimes we expand

such a structure by designated elements from its universe. For example, if s =

(s

1

; : : : ; s

n

) is an n-tuple of elements from S and '(x) is a formula where at most

the variables of x = (x

1

; : : : ; x

n

) occur free, then (S; s) j= '(x) indicates that '

holds in S when interpreting x

i

by s

i

for i = 1; : : : ; n.

The quanti�er-depth qd(') of formulas ' is the maximal number of nested

quanti�ers in '. Given m � 0, two structures S, T with universes S, T and des-

ignated n-tuples s, t of elements from S, T , respectively, are called m-equivalent

(written (S; s) �

m

(T ; t)) if

(S; s) j= '(x) () (T ; t) j= '(x)

for all Sig-formulas '(x) of quanti�er-depth� m. For the case of empty sequences

s and t this means that the two structures satisfy the same sentences (formulas

without free variables) of quanti�er-depth at most m.

The Ehrenfeucht-Fra��ss�e game (short: EF-game) allows to verify the claim

(S; s) �

m

(T ; t). As a preparation we need the notion of partial isomorphism.

Given Sig-structures S and T with universes S and T , we indicate a �nite relation

f(s

1

; t

1

); : : : ; (s

n

; t

n

)g � S � T by s 7! t. Such a relation is called a partial

isomorphism if the assignment s

i

7! t

i

determines an injective (partial) function

p from S to T (whose domain consists of the elements in s), which moreover

preserves all relations Q

S

, R

S

under consideration, in the sense that

s 2 Q

S

() p(s) 2 Q

T

and (s; s

0

) 2 R

S

() (p(s); p(s

0

)) 2 R

T

for all symbols Q;R from Sig and all s; s

0

in the domain of p.

Let us now describe how to play the EF-game. The game G

m

((S; s); (T ; t))

is played between two players called Spoiler and Duplicator (as suggested in

[FSV95]) on the structures (S; s) and (T ; t). There are m rounds carried out as

follows: The initial con�guration is the relation s 7! t. Given a con�guration r,

a round is composed of two moves: �rst Spoiler picks an element s from S or t

from T , and then Duplicator reacts by choosing an element in the other structure,

i.e. by choosing some t from T , resp. some s from S. The new con�guration is

r [f(s; t)g. After m rounds, Duplicator has won if the �nal con�guration is a

partial isomorphism (otherwise Spoiler has won). Note that this can happen only

if each intermediate con�guration is also partial isomorphism. While Duplicator

aims at a partial isomorphism at the end, Spoiler tries to avoid this. We say that

Duplicator wins the game G

m

((S; s); (T ; t)) if Duplicator has a strategy to win

each play (we skip a formal de�nition of \strategy").

18

Example 4.1 Let u = aabaacaa and v = aacaabaa and consider the game

G

2

(u; v) over the word models for u; v (including the linear ordering < of let-

ter positions). Duplicator looses this game: Spoiler can pick the u-positions with

the letters b and c, whence Duplicator can only respond by picking the positions

with b and c in v, in order to preserve the relations Q

b

and Q

c

; but then the order

between the positions is not preserved and the constructed correspondence is not

a partial isomorphism.

Example 4.2 Consider the same game as before, however over word models

in the signature with successor relation S only (besides the letter predicates

Q

a

; Q

b

; Q

c

). Now Duplicator has a winning strategy: If Spoiler picks a position

with b or c or a position adjacent to one of them, Duplicator reacts accordingly

in the other word; in the remaining cases, where Spoiler picks the �rst or last

position, Duplicator does the same in the other word. It is easy to check that

for the second move, Duplicator will be able to respond in building a partial

isomorphism, respecting the letter predicates and the successor relation. Thus

Duplicator wins this game.

Example 4.3 Finally, we consider word models as labelled linear orderings

(without successor relation); so we identify a word w with a structure (dom(w); <

; (Q

a

)

a2A

). With this format of word models (and assuming the trivial alphabet

A = fag), Duplicator wins the gameG

2

(aaa; a

n

) for any n � 3: In the �rst round,

Spoiler may pick a �rst position, a last position, or a non-border position in one

of the two words, and Duplicator reacts accordingly. This allows Duplicator also

to respond correctly (i.e., order-preserving) in the second round. Let us now

consider a 3-rounds game G

3

(a

i

; a

j

): Here after the �rst round decompositions of

the two words in the form a

i

= a

i

1

aa

i

2

and a

j

= a

j

1

aa

j

2

are reached (the displayed

letters a representing the positions chosen in the �rst round). Remembering the

2-rounds game, Duplicator will win if i

1

; j

1

are both � 3 or else i

1

= j

1

, and

similarly for i

2

; j

2

. Clearly Duplicator can reach such a decomposition in the �rst

round if i; j are both � 7, or if i = j. In general, with k rounds ahead, Duplicator

needs to ensure that corresponding letter-blocks delimited by chosen positions are

of length � 2

k

�1 or are of the same length. In this way one sees that Duplicator

wins G

m

(a

i

; a

j

) for any i; j � 2

m

� 1; and by a slightly generalized argument one

veri�es that Duplicator also wins G

m

(w

i

; w

j

) for any word w and i; j � 2

m

� 1.

How can one verify in general that Duplicator wins the game

G

m

((S; s); (T ; t))? A simple approach is to specify, for each k = 0; : : : ;m, a

set I

k

of partial isomorphisms (describing con�gurations) which would Duplica-

tor allow to win with k rounds ahead. Of course, s 7! t should belong to I

m

, all

partial isomorphisms in the sets I

k

should extend s 7! t, and any way to continue

a play from a con�guration in I

k

should lead to a con�guration in I

k�1

. More

precisely, there should be nonempty sets I

m

; : : : ; I

0

of partial isomorphisms, each

19

of them extending s 7! t, such that for all k = m; : : : ; 1 the following properties

hold:

� (back property) 8p 2 I

k

8t 2 T 9s 2 S such that p [f(s; t)g 2 I

k�1

� (forth property) 8p 2 I

k

8s 2 S 9t 2 T such that p [f(s; t)g 2 I

k�1

.

If a sequence I

m

; : : : ; I

0

with these properties exists, we write (S; s)

�

=

m

(T ; t).

By induction on m one veri�es that this condition holds i� Duplicator wins

G

m

((S; s); (T ; t)).

Fra��ss�e showed in the �fties that the relations �

m

and

�

=

m

coincide on re-

lational structures of �nite signature; later Ehrenfeucht introduced the game

theoretical formulation of

�

=

m

:

Theorem 4.4 (Ehrenfeucht-Fra��ss�e Theorem)

For m � 0:

(S; s) �

m

(T ; t) i� (S; s)

�

=

m

(T ; t) i� Duplicator wins G

m

((S; s); (T ; t)):

Proof. The second equivalence was explained above. The step from

�

=

m

-

equivalence to �

m

-equivalence is easy by induction on m. For the converse, it

is su�cient to describe any

�

=

m

-class by a formula of quanti�er-depth m. More

precisely: For each structure (S; s) and any given m � 0, there is a formula

'

m

(S;s)

(x) of quanti�er-depth m which holds in precisely those structures (T ; t)

that are

�

=

m

-equivalent to (S; s).

The de�nition proceeds by induction on m, giving the formalization of

�

=

0

-

equivalence (partial isomorphism) and of the two extension properties (back and

forth):

'

0

(S;s)

(x) :=

^

'(x) atomic; (S;s)j='(x)

'(x) ^

^

'(x) atomic; (S;s)j=:'(x)

:'(x)

'

m+1

(S;s)

(x) :=

^

s2S

9x

n+1

'

m

(S;s;s)

(x; x

n+1

) ^ 8x

n+1

_

s2S

'

m

(S;s;s)

(x; x

n+1

)

To justify this de�nition in case the structure S is in�nite, one has to observe

that (due to the �nite signature) there are only �nitely many atomic formulas

involving variables from x

1

; : : : ; x

n

, and that (as veri�ed by induction on m) the

number of logically nonequivalent formulas '

m

(S;s)

(x) is �nite (for any given length

of tuples s). Thus the disjunction and the conjunction (over s 2 S) in the de�ni-

tion of '

m+1

(S;s)

(x) both range only over �nitely many formulas '

m

(S;s;s)

(x; x

n+1

) and

thus specify �rst-order formulas. 2

Let us reconsider the examples above. The Ehrenfeucht-Fra��ss�e Theorem says

that Duplicator wins the m-round game on two word models i� they cannot be

distinguished by sentences of quanti�er-depth m. Recalling the �rst example,

20

concerning u = aabaacaa and v = aacaabaa where Spoiler wins G

2

(u; v), we

see that there is indeed a sentence of quanti�er-depth 2 in the signature with

< which distinguishes between u and v (namely, 9x9y(Q

b

(x) ^ x < y ^ Q

c

(y))).

On the other hand, as seen from the second example together with Theorem

4.4, no sentence of quanti�er-depth 2 in which the successor relation is the only

numerical relation can distinguish between u and v.

Coming back to the Example 4.3, we conclude the following:

Proposition 4.5 The language fa

n

j n is eveng is not �rst-order de�nable.

Proof. Supposing that a de�ning �rst-order sentence exists, we can eliminate

the use of the successor relation S in terms of < , and obtain a sentence ' with <

only, say of quanti�er-depth m. This sentence ' is satis�ed in a

2

m

. By Example

4.3 and Theorem 4.4, we have a

2

m

�

m

a

2

m

+1

; hence ' is also satis�ed in the word

a

2

m

+1

(of odd length), which gives a contradiction. 2

In general, any �rst-order de�nable language L shares the following strong

pumping property: If m is su�ciently large, then for any three words u; v; w over

the alphabet under consideration we have uv

m

w 2 L i� uv

m+1

w 2 L. In algebraic

terms, this means that the syntactic monoid of a �rst-order de�nable language is

aperiodic.

4.2 Locally Threshold Testable Sets

In this section we determine the expressive power of �rst-order logic over \suc-

cessor structures", more generally over graphs of bounded degree. A graph with

edge relation E is of degree � d if for any vertex s there are at most d vertices

t with (s; t) 2 E or (t; s) 2 E. Special cases are the (binary) tree models or

word models with successor relation only. Using EF-games, we show that �rst-

order logic over graphs of bounded degree is of rather limited power; it can only

express statements saying which local neighbourhoods of vertices appear in a

graph and which not, and how often (counted up to some �xed threshold) such

a neighbourhood may occur.

To specify neighbourhoods, we say that for a graph S, s 2 S, and r 2 N,

the \sphere with radius r around s in S" is the induced subgraph of S with

vertices of distance � r from s. (Here we assume that edges may be traversed in

both directions.) This subgraph with designated center s is denoted r�sph(S; s).

Since we consider graphs of degree � d, there is, for any r > 0, only a �nite

number of possible isomorphism types of r-spheres. For an isomorphism type �

of r-spheres, let occ(�;S) be the number of occurrences of spheres of type � in S.

We show that any �rst-order formula is equivalent (over graphs of degree � d) to

a statement on these occurrence numbers for �nitely many types �. Moreover, for

any given formula the values occ(�;S) are relevant only up to a certain threshold

q 2 N.

21

De�nition 4.6 Let S �

r;q

T if for any isomorphism type � of spheres of radius

r the numbers occ(�;S) and occ(�;T) are either both larger than the threshold

number q or else coincide. A set of graphs is locally threshold testable if for some

r; q, it is a union of �

r;q

-equivalence classes (which is a �nite union if the degrees

of the graphs under consideration are bounded).

The following theorem states that �

r;q

-equivalence (for suitable r; q) is �ne

enough to capture m-equivalence (i.e., indistinguishability by formulas of quanti-

�er depth m). More general formulations are possible, but for simplicity we stay

with the case of graphs of degree bounded by d.

Theorem 4.7 (\Sphere Theorem", [Hnf65])

For any m � 0 there are r; q � 0 such that for any two graphs S;T (�nite or

in�nite, but of degree � d) we have: If S �

r;q

T then S �

m

T .

Proof. By Theorem 4.4, it su�ces to ensure S

�

=

m

T from S �

r;q

T for

suitably chosen r; q. Set r = 3

m

and q = m � c where c is the maximal size of

a 3

m

-sphere. The required sequence of sets I

0

; : : : ; I

m

of partial isomorphisms is

de�ned as follows: Let p : (s

1

; : : : ; s

m�k

) 7! (t

1

; : : : ; t

m�k

) belong to I

k

i�

m�k

[

i=1

3

k

� sph(S; s

i

)

�

=

m�k

[

i=1

3

k

� sph(T ; t

i

)

i.e., the two induced subgraphs formed from the 3

k

-spheres around the s

i

, resp.

the t

i

, are isomorphic. To verify e.g. the forth property, assume this condition

holds for p and let s(= s

m�(k�1)

) 2 S. We have to �nd t(= t

m�(k�1)

) 2 T such

that

m�(k�1)

[

i=1

3

k�1

� sph(S; s

i

)

�

=

m�(k�1)

[

i=1

3

k�1

� sph(T ; t

i

):

If s 2

2

3

� 3

k

�sph(S; s

i

) for some s

i

, we may choose t from

2

3

� 3

k

�sph(T ; t

i

) cor-

respondingly; note that 3

k�1

�sph(S; s) is contained in 3

k

�sph(S; s

i

) and thus

3

k�1

�sph(T ; t) in 3

k

�sph(T ; t

i

). So 3

k�1

�sph(S; s)

�

=

3

k�1

�sph(T ; t) holds.

Otherwise, 3

k�1

�sph(S; s), say of type �, is disjoint from all 3

k�1

�sph(S; s

i

),

and it su�ces to �nd a sphere of type � in T which is disjoint from all spheres

3

k�1

�sph(T ; t

i

). This will be possible if the number of occurrences of spheres of

type � in T is large enough. But this is guaranteed in view of the number of

these spheres in S and the assumption S �

r;q

T . 2

As a consequence, we note the following result:

Theorem 4.8 A �rst-order de�nable set of graphs of bounded degree is locally

threshold testable.

22

Thus, �rst-order logic over words, trees, and graphs of bounded degree, can

express only \local properties", i.e. statements on occurrences of local neigh-

bourhoods. More precisely, each �rst-order formula is equivalent to a boolean

combination of statements \sphere � occurs � n times" (because for � of radius

r and n � q, such conditions �x the �

r;q

-class to which a structure belongs). The

statement \sphere � (of k elements) occurs � n times" can be expressed by a

sentence of the form

9x

1

9y

1

: : :9x

n

9y

n

'(x

1

; y

1

; : : : ; x

n

; y

n

)

where each y

i

is a (k�1)-tuple of variables and the formula ' states the following:

The x

i

are pairwise distinct (as centers of spheres), for each i the elements x

i

and

y

i

are pairwise distinct building a graph of isomorphism type � (expressed by

a conjunction of all atomic formulas and their negations which hold over the

elements x

i

, y

i

to form a sphere of type �), and for any element z distinct from

x

i

and the y

i

the distance from x

i

is greater than d (i.e. is not adjacent to one of

those elements of y

i

which were chosen in distance < d to x

i

). When written in

prenex normal form, this sentence is of �

2

-form.

Corollary 4.9 Over graphs of bounded degree, any �rst-order sentence is equiv-

alent to a boolean combination of �

2

-sentences.

This strong reduction of quanti�er complexity of formulas shows again the

weakness of �rst-order logic over graphs.

In the domain of words, we see that a language is FO[S]-de�nable i� it is lo-

cally threshold testable ([Th82a]). The locally threshold testable word languages

are usually introduced in a slightly di�erent but equivalent way than above. Note

that pre�xes and su�xes of words may be speci�ed by spheres whose center has

no predecessor, respectively has no successor. When spheres are replaced just

by (word-) segments without designated center (as is usually done in language

theory), pre�xes and su�xes have to be treated separately: For a word w over

an alphabet A, a word � 2 A

+

, and a number q let occ

�;q

(w) be the number of

occurrences of � in w if this number is < q, and otherwise q. Furthermore, let

pref

d

(w) and suf

d

(w) be the segment of the �rst, resp. last d letters of w (or w

itself if jwj < d). Now de�ne, for words u; v and given d and q, u �

d;q

v if for

all segments � of length � d we have occ

�;q

(u) = occ

�;q

(v), pref

d

(u) = pref

d

(v),

and suf

d

(u) = suf

d

(v). A language is then called locally threshold testable if it is

a union of �

d;q

-equivalence classes for some d and q.

As an example, consider the language L de�ned by the regular expression

a

�

ba

�

ca

�

. For any d and q, one �nds a number n such that a

n

ba

n

ca

n

�

d;q

a

n

ca

n

ba

n

(in accordance with Example 4.2 given above for EF-games). Since the �rst word

belongs to L and the second does not, L is not locally threshold testable, hence

not FO[S]-de�nable.

23

Theorem 4.8 can also be applied to obtain linear time bounds for �rst-order

expressible graph problems ([See96]). Furthermore, it yields a new proof for

the reduction of EMSO-logic to �nite automata: An EMSO-formula de�nes a

projection of a �rst-order de�nable set and hence, by Theorem 4.8, a projection

of a locally threshold testable set. Since locally threshold testable languages are

recognized by �nite automata, so are their projections (using nondeterminism).

In [Th91] this approach is considered over graphs of bounded degree and taken

as a starting point to introduce �nite-state graph acceptors. In the framework of

pictures (rectangular arrays of symbols, with a horizontal and a vertical successor

relation), these graph acceptors turn out to be equivalent to \tiling systems" (cf.

[GRST96] or [GR96]).

4.3 Star-Free Languages

A language L � �

+

is called star-free if it can be constructed from �nite languages

by applications of boolean operations and concatenation. Accordingly, star-free

expressions over a given alphabet A are built up from constants ;, � and a 2 A

(denoting the empty set, the singleton with the empty word, and the set fag,

respectively) by means of the operations [, \, � (for complement w.r.t. A

�

),

and concatenation dot �. The expression A

�

is also admitted, as abbreviation

of � ;. By a natural correspondence between these operations and the logical

connectives _, ^, :, and 9, it is easy to transform star-free expressions into

�rst-order formulas. For example, over A = fa; b; cg the expression A

�

� a � b � �

(A

�

� a �A

�

) de�nes the same language as

9x9y(S(x; y)^Q

a

(x) ^Q

b

(y) ^ :9z(y < z ^Q

a

(z))):

An analysis of �rst-order de�nability shows also the converse:

Theorem 4.10 (McNaughton, Papert [McNP71])

A language is star-free i� it is �rst-order de�nable (in the signature with <).

Proof. For the translation of �rst-order formulas into star-free expressions, we

follow the approach of [Lad77], [Th82a], [PP86], applying the Ehrenfeucht-Fra��ss�e

technique.

We proceed by induction on quanti�er-depth m and sketch the induction

step. Consider a �rst-order formula '(x

1

; : : : ; x

n

) of quanti�er-depth m, where

for simplicity we assume that ' implies x

1

< : : : < x

n

. We shall reformulate

'(x

1

; : : : ; x

n

) as a disjunction of \normal formulas"

0

^Q

a

1

(x

1

) ^

1

^ : : : ^ Q

a

n

(x

n

) ^

n

where the

i

, again of quanti�er-depth m, speak only about the segments en-

closed by the x

i

; i.e.

0

speaks only about the segment up to (and excluding) x

1

,

24

for 0 < i < n the formula

i

speaks only about the segment enclosed by x

i

and

x

i+1

, and

n

speaks about the segment after x

n

to the end of the word. (Formally,

this is ensured by allowing only relativized quanti�ers in the

i

, e.g. in

1

only

quanti�ers 9y(x

1

< y < x

2

^ : : :) and 8y(x

1

< y < x

2

! : : :).) Given the reduc-

tion to disjunctions of normal formulas, the induction is easy: in the induction

step, a formula such as 9x'(x) is written as a disjunction of normal formulas

9x(

0

^Q

a

(x) ^

1

), where for

0

;

1

equivalent star-free expressions r

0

; r

1

exist

by induction hypothesis. Then 9x'(x) is equivalent to the corresponding union

of expressions r

0

� a � r

1

.

To achieve the reduction of formulas to disjunctions of normal formulas, two

facts are used on the m-equivalence between word models, which can be veri�ed

with the Ehrenfeucht-Fra��ss�e game technique: �rst, the description of the �

m

-

class of a word model (w; p

1

; : : : ; p

n

) with designated positions p

1

; : : : ; p

n

by a

formula '

m

(w;p

1

;::: ;p

n

)

(cf. the proof of Theorem 4.4), and secondly the following

\congruence lemma" for m-equivalence:

Lemma 4.11 If u �

m

u

0

, a 2 A, and v �

m

v

0

, then u � a � v �

m

u

0

� a � v

0

.

Proof. We use the Ehrenfeucht-Fra��ss�e Theorem 4.4. The assumption tells

us that Duplicator has winning strategies for the games G

m

(u; u

0

) and G

m

(v; v

0

).

An obvious composition of these two strategies (\on the segments u and u

0

use

the �rst strategy, on the segments v and v

0

use the second strategy") guarantees

Duplicator to win also the game G

m

(u � a � v; u

0

� a � v

0

). 2

Now a �rst-order formula '(x

1

; : : : ; x

n

) of quanti�er-depth m (assuming

x

1

< : : : < x

n

as before) is transformed into a normal formula as follows. By

de�nition of m-equivalence �

m

, the class of word models (v; q

1

; : : : ; q

n

) which

satisfy ' is a (�nite) union of �

m

-classes, each of them described by a formula

'

m

(w;p

1

;::: ;p

n

)

(x

1

; : : : ; x

n

) where (w; p

1

; : : : ; p

n

) is a representative of the respective

class. So ' is equivalent to a disjunction of formulas '

m

(w;p

1

;::: ;p

n

)

(x

1

; : : : ; x

n

), and

it su�ces to express such a formula as a disjunction of normal formulas. By the

lemma above the �

m

-class of (w; p

1

; : : : ; p

n

) is �xed by the �

m

-classes of the

segments w

0

; : : : ; w

n

of w delimited by the positions p

i

, and by the letters a

i

as-

sociated with the p

i

. We now collect conjunctions of corresponding formulas '

m

w

i

and Q

a

i

(x

i

) (each conjunction describing a sequence w

0

; a

1

; : : : ; a

n

; w

n

), namely

those conjunctions which imply '

m

(w;p

1

;::: ;p

n

)

(x

1

; : : : ; x

n

). Altogether we obtain a

formula equivalent to ', as a disjunction of conjunctions of formulas '

m

w

i

and

Q

a

i

(x

i

). Thus a disjunction of normal formulas is reached. 2

Theorem 4.10 is the starting point of a rich de�nability theory of star-free lan-

guages. The signi�cance of the class of star-free languages is much supported by

Sch�utzenberger's fundamental characterization [Sch65] in terms of �nite group-

free (or: aperiodic) monoids. (Whereas we have veri�ed the aperiodicity prop-

25

erty of �rst-order de�nable languages in Proposition 4.5 above, the converse is

more di�cult and relies on nontrivial results concerning the decomposition of

monoids; see e.g. [Per90].) In the framework of minimal deterministic automata,

this aperiodicity property amounts to the lack of words which induce a nontrivial

permutation on a subset of the state space. Since this property is decidable,

or equivalently whether the syntactic monoid of a regular language contains a

nontrivial group, Sch�utzenberger's theorem together with Theorem 4.10 provides

an algorithm to decide whether a regular language is �rst-order de�nable. Many

more language classes have been characterized by special types of regular ex-

pressions, restrictions and variants of �rst-order formulas, structural properties

of automata, and corresponding properties of syntactic monoids. The class of

locally threshold testable languages, considered in the previous section, is an ex-

ample, and adaptations of the Ehrenfeucht-Fra��ss�e method are usually applied in

�xing the logical part of the characterizations. The �eld is presented in several

surveys and books, e.g. [Pin86] and [Str94]. Below we list only a small selection

of results. We shall only consider languages of words; in fact, it seems di�cult to

characterize �rst-order logic over trees by structural properties of tree automata

(for partial results in this direction see [Pot95]).

Within the class of star-free languages, a hierarchy (V

n

)

n�0

of language classes

can be built up whose levels measure the concatenation depth of de�ning star-

free expressions. Fixing an alphabet A with at least two letters, one sets V

0

to

be the class consisting of the languages ; and A

�

, and V

n+1

to be the class of

boolean combinations of languages L

0

� a

1

�L

1

� : : : a

k

�L

k

with k � 0, a

i

2 A, and

L

i

2 V

n

. The levels of this hierarchy have a natural characterization in terms of

quanti�er-pre�xes of �rst-order formulas in which only < (but not S) appears as

a numerical relation:

Theorem 4.12 (cf. [PP86]) A star-free language belongs to the class V

n

i� it is

de�nable by a B(�

n

)-sentence of �rst-order logic with <.

The �rst level of this hierarchy gives the class of piecewise testable languages

(Simon [Sim75]). It can be shown that the V

n

form a strictly increasing hierarchy;

in the logical framework the EF-game may be applied for the hierarchy proof

([Th84a]). Analogous results can be proved for the closely related \dot-depth

hierarchy" ([Th82a], [Th87]). A still �ner classi�cation, distinguishing formulas

not only by the number of quanti�er alternations but also by the lengths of

quanti�er blocks, is studied in [BS95]. An open problem in this theory is the

question whether the smallest n such that a given star-free language belongs to

V

n

can be computed e�ectively.

The most elementary examples of languages which are not �rst-order de�nable

are based on \modular counting"; instances are the set of words of even length or

the language PARITY over fa; bg consisting of the words with an even number of

occurrences of b (cf. Proposition 4.5 above). Two kinds of extensions of �rst-order

26

logic have been considered to obtain stronger frameworks within the expressive

range of MSO-logic where such languages become de�nable: the adjunction of

stronger quanti�ers (or similar operators), and the use of more general numerical

relations than successor and order.

Properties which involvemodular counting are conveniently described bymod-

ular quanti�ers 9

q;r

x, to be read as \there are exactly r elements x modulo q such

that : : : ". In [STT95] it is shown that the languages de�nable in the extension

of �rst-order logic by modular quanti�ers are those whose syntactic monoid is

�nite and contains only groups which are solvable. As a consequence, this class is

properly included in the class of regular languages, and membership of a regular

language in it is decidable.

Certain properties concerning modular counting are also captured by special

numerical predicates, in particular the unary predicates C

r;q

, containing those

numbers (in word models: positions) which are congruent to r modulo q. The

use of these predicates was suggested in [McNP71], and together with successor

and order they constitute the regular numerical predicates. Using them, the set

of words of even length becomes de�nable, whereas PARITY is not de�nable in

�rst-order logic with regular numerical predicates only.

Such extensions of FO[S;<]-logic by additional numerical relations are closely

connected with circuit complexity classes. Let us mention two fundamental the-

orems, which are the entrance to a fascinating and fastly developing theory: A

language is de�nable in �rst-order logic with arbitrary numerical relations i� it

belongs to the circuit complexity class AC

0

, i.e. is de�ned by a family of cir-

cuits of bounded depth and with \and"-gates and \or"-gates of unbounded fan-in

([Imm87]). As shown in [BCST88], the intersection of AC

0

with the class of reg-

ular languages contains precisely the languages de�nable in �rst-order logic with

regular numerical predicates. The reader should consult Straubing's book [Str94]

for proofs, many more results, and some intriguing open problems.

In this section we discussed three typical applications of the Ehrenfeucht-

Fra��ss�e technique to �rst-order de�nable formal languages: the con�nement of

FO[S]-logic to the de�nition of local properties only (Theorems 4.7 and 4.8), the

inability of FO[S;<]-logic to specify conditions on modular counting (Proposition

4.3), and the compatibility of FO[S;<]-de�nability with concatenation (Congru-

ence Lemma 4.11). Another important application of model theoretic games in

the theory of automata and transition systems, which we cannot discuss further

here, is the notion of bisimulation. Bisimulations can be viewed as special fami-

lies of partial isomorphisms, corresponding to a restricted type of EF-game. This

game is played on tree structures arising from unravellings of transition systems,

and a play of the game is required to proceed only \downward" the two trees un-

der consideration, starting from the roots. The corresponding logics are systems

of modal logic and process logic (equivalent to fragments of �rst-order logic). For

an overview of this subject see [Mil90] or [Sti96].

27

5 Automata and MSO-Logic on In�nite Words

In his paper [B�u62], B�uchi showed that MSO-logic over !-words is equivalent to

�nite automata equipped with natural acceptance conditions for in�nite words.

This founded a beautiful branch of de�nability theory for properties of in�nite

sequences, complementing earlier results of descriptive set theory and recursion

theory.

In this section, only some central logical aspects of !-automata are reviewed.

More information can be found in the chapter on !-languages in this Handbook

or the surveys [HR86], [Sta87], [Th90], [TL94].

5.1 !-Automata

While the acceptance condition of automata over �nite words is rather canonical,

there are many possibilities of de�ning acceptance of in�nite words. An accep-

tance condition restricts the occurrences of states in a run � under consideration.

Usually, it refers to those states which occur in�nitely often in � and is �xed by

an \acceptance component" of the !-automaton.

De�nition 5.1 A �nite !-automaton has the form A = (Q;A; q

0

;�;Acc) with

�nite state set Q, input alphabet A, initial state q

0

, transition relation � �

Q � A � Q, and an acceptance component Acc. A run of A on a given input

!-word � = �(0)�(1) : : : with �(i) 2 A is a sequence � = �(0)�(1) : : : 2 Q

!

such

that �(0) = q

0

and (�(i); �(i); �(i+ 1)) 2 � for i � 0. In deterministic automata

the transition relation is replaced by a transition function � : Q�A! Q, and a

run has to satisfy �(i+ 1) = �(�(i); �(i)) for i � 0.

Let us introduce the standard acceptance modes. We write 9

!

for the quanti�er

\there exist in�nitely many" and consider the set

In(�) = fq 2 Q j 9

!

i �(i) = qg:

The most frequently used acceptance conditions are the following requirements

on In(�) (called so according to their inventors):

� B�uchi condition [B�u62]: In(�) \ F 6= ; for a set F � Q of \�nal states",

requiring that some �nal state occurs in�nitely often in the run �.

� Muller condition [Mul63]:

W

F2F

In(�) = F , for a family F � 2

Q

of �nal

state sets, requiring that the set of states assumed in�nitely often in the

run � forms a set in F .

� Rabin condition (\pairs condition") [Rab69], [Rab72]:

W

n

i=1

(In(�) \ E

i

= ; ^ In(�) \ F

i

6= ;), for a sequence
 of \accepting

pairs" (E

1

; F

1

); : : : ; (E

n

; F

n

) with E

i

; F

i

� Q; it requires that for some i,

all states of E

i

are visited only �nitely often in � (excluded from some point

onwards), but some state of F

i

(i.e., a final state) is visited in�nitely often.

28

� Streett condition (\complemented pairs condition", the dual of the Rabin

condition) [St82]:

V

n

i=1

(In(�)\E

i

6= ; _ In(�)\F

i

= ;) for a sequence
 of

pairs (E

1

; F

1

); : : : ; (E

n

; F

n

) where the E

i

; F

i

are subsets of Q; it represents

a \fairness condition" which can be read as \for each i, if some state of F

i

is visited in�nitely often, then some state of E

i

is visited in�nitely often."

Thus, an !-automaton A = (Q;A; q

0

;�; F) (used with the B�uchi acceptance

condition) is called B�uchi automaton; similarly, we speak of Muller automata

A = (Q;A; q

0

;�;F), Rabin automata, and Streett automata A = (Q;A; q

0

;�;
),

respectively, according to the use of their acceptance component. An !-language

is called B�uchi-, Muller-, Rabin-, Streett-recognizable if it consists of the !-words

(over the considered alphabet) which are accepted by a B�uchi-, Muller-, Rabin-,

Streett-automaton, respectively.

It is useful to compare these acceptance conditions in a simple case.

Example 5.2 Consider the !-language L � fa; b; cg

!

consisting of all !-words

� which satisfy the condition \if a occurs in�nitely often in �, then also b does".

The most convenient option is to use a Streett automaton for de�ning L, which

has three states q

a

; q

b

; q

c

visited after reading a, b, c, respectively. The accep-

tance component
 just contains the pair (fq

b

g; fq

a

g). A corresponding Muller

automaton (over the same state graph) has the acceptance component F which

contains all sets F for which the implication q

a

2 F) q

b

2 F holds. For obtain-

ing a suitable Rabin automaton, note that � is in L i� either b occurs in�nitely

often in � or both a; b occur only �nitely often. Thus, two accepting pairs su�ce

(again over the same state graph), namely (;; fq

b

g) and (fq

a

; q

b

g; fq

c

g). To obtain

a suitable B�uchi automaton, we capture the disjunction \either b in�nitely often

or a; b �nitely often" by nondeterminism: we introduce an extra \c-sink-state"

q

c!

, reached via letter c from any of q

a

; q

b

; q

c

and such that only one transition

from q

c!

exists, via c back to q

c!

. Now we may set F = fq

b

; q

c!

g as set of �nal

states.

An exercise in simulation shows that the above example is typical:

Proposition 5.3 Nondeterministic B�uchi-, Muller-, Rabin-, and Streett-

automata all recognize the same class of !-languages.

Proof. A B�uchi-, Rabin-, or Streett-automaton is easily simulated by a

Muller automaton, by collecting, in its acceptance component F , those state sets

which lead to acceptance in the given automaton. In turn, given a Muller automa-

ton with acceptance component F , a corresponding B�uchi automaton guesses in

advance the set F 2 F of states to be visited in�nitely often, and also guesses

the point on its input � from which onwards only states in F will be seen. From

there it su�ces to check that the visited states �ll the set F again and again.

This can be signalled by the B�uchi acceptance condition. 2

29

It follows from McNaughton's Theorem (see next section) that even determin-

istic automata can be obtained when the Muller-, Rabin-, or Streett-acceptance

is used. For the complexity analysis of the transformations from one acceptance

condition to another, see e.g. [Saf88], [Saf92] and [KPB95].

In a more general framework of acceptance conditions, one can also consider

the case that only the mere occurrence of states in runs is restricted (instead of

the in�nite occurrence). For a given run � one considers the set

Oc(�) = fq 2 Q j 9i �(i) = qg

and may form analogous expressions as above, e.g. Oc(�) \ F 6= ; for a set

F of states or Oc(�) 2 F for a system F of state sets. The latter is called

Staiger-Wagner acceptance (introduced in [SW74]); it captures the general case

of condition where the set of visited states in a run determines whether the input

is accepted. (In the classi�cation of execution sequence properties of nontermi-

nating programs, this case is described by the term \obligation property", cf.

[MP92].)

A still more exible framework is obtained in a logical setting: Here we

consider acceptance components which are boolean combinations of formulas

\9i �(i) 2 F" and \9

!

i �(i) 2 F" for state sets F of a given automaton. All

conditions mentioned above can be formulated in this way. A natural classi�-

cation leads to six classes, given by the mentioned \atomic conditions", their

negations, and boolean combinations of the �rst, resp. second type of atomic for-

mula. Boolean combinations of conditions \9i �(i) 2 F" characterize the Staiger-

Wagner-acceptance mode, while Muller acceptance is described by boolean com-

binations of conditions \9

!

i �(i) 2 F". A complete analysis of the expressiveness

of the acceptance conditions and their transfer to automata with arbitrary stor-

age types (like pushdown store) is given by Staiger [Sta87] and Engelfriet and

Hoogeboom [EH93].

Let us connect the B�uchi recognizable !-languages with the standard notion

of regular sets of �nite words. Suppose the B�uchi automaton A = (Q;A; q

0

;�; F)

accepts the !-word �, say by a run which reaches a �nal state q 2 F and revisits

this �nal state again and again. Let U

q

, V

q

be the (regular) sets of words which

allow A to pass from q

0

to q, resp. from q to q. Then the !-word � can be

decomposed as � = uv

0

v

1

: : : with u 2 U

q

, v

i

2 V

q

for i � 0, in short, � 2

U

q

� V

!

q

. Thus we have L

!

(A) =

S

q2F

U

q

� V

!

q

. It is not di�cult to show that this

form of !-languages characterizes B�uchi recognizability: An !-language is B�uchi

recognizable i� it is a �nite union of sets U � V

!

where U; V are regular sets of

�nite words. One speaks of the regular !-languages.

In the sequel we focus on the B�uchi recognizable (or regular) !-languages

and their logical description. The key result, due to B�uchi [B�u62], states that

an !-language is B�uchi recognizable i� it is MSO-de�nable. The nontrivial step

30

in the proof is to show closure of the class of B�uchi recognizable sets under

complement. The original approach of [B�u62] uses a representation of B�uchi

recognizable sets in the form

S

1�i�n

U

i

� V

!

i

, where the U

i

; V

i

are classes of a

su�ciently �ne congruence over A

�

of �nite index, and applies a combinatorial

argument (e.g., a form of Ramsey's Theorem) to guarantee that the complement

has again such a representation.

An alternative is to proceed to deterministic automata. This approach does

not work when the B�uchi acceptance condition is employed. (For example, a

deterministic B�uchi automaton recognizes the set of !-words over fa; bg with in-

�nitely many occurrences of a, but no deterministic B�uchi automaton recognizes

the complement of this set.) However, it turns out that deterministic Muller au-

tomata are equivalent in expressive power to (nondeterministic) B�uchi automata.

The complementation result follows, because the class of !-languages recognized

by deterministic Muller automata is clearly closed under complement. (In an

automaton with state set Q and system F of �nal state sets, proceed to 2

Q

nF .)

In the next two subsections we give a proof of this determinization theorem and

discuss some of its logical applications.

5.2 Determinization of !-Automata

The purpose of this section is to show the key theorem of the theory of �nite

!-automata:

Theorem 5.4 (McNaughton's Theorem [McN66])

A B�uchi automaton can be transformed e�ectively into an equivalent deterministic

Muller automaton.

We shall follow Safra's proof [Saf88], which is an intricate re�nement of the

classical subset construction as used in the determinization of automata over

�nite words. First we outline the main ideas and do some preparations.

LetA = (Q;A; q

0

;�; F) be a B�uchi automaton. The classical subset construc-

tion uses sets of states from Q, which we call (Q�)macrostates here, as states of

the desired deterministic automaton, and such a macrostate is declared �nal if it

contains a state from F . Starting from fq

0

g, the subset automaton will assume

after a �nite input word w the macrostate consisting of all states reachable by A

from q

0

via w. However, the acceptance of an !-word by A cannot be captured

by this construction: For instance, assume F = fqg and that A can reach q via

each pre�x of �, but that no such run ending in q can be continued on the given

input !-word (while it is continued from other reachable states). Then \success"

is signalled by each macrostate of the run of the subset automaton (since q is

present in all macrostates), but no in�nite run of A on the input exists in which

q occurs in�nitely often.

In Safra's construction, an own thread of macrostates is split o� whenever

�nal states are encountered. The di�erent macrostates which are to be handled

31

simultaneously are organized in a tree structure, called Safra tree. Safra trees

will serve as states of the deterministic automaton to be constructed. The root

macrostate of such a Safra tree collects the momentary reachable states of the

given automaton A, as in the classical subset automaton. The \splitting of

threads" is realized by a simple rule: For each macrostate occurring in a given

Safra tree in which �nal states (from F) are present, say the states f

1

; : : : ; f

m

,

introduce ff

1

; : : : ; f

m

g as a new son-macrostate (more precisely, as the youngest

son in the order of sons). To proceed to the next Safra tree in the run, apply

the usual subset construction macrostate-wise for each macrostate in the Safra

tree (including the newly created son-macrostates), i.e. compute the set of states

reachable from the respective macrostate via the input letter under consideration.

Note that in this way the union of son-macrostates is always initialized and

henceforth kept as a subset of the corresponding parent macrostate.

Without a process of merging macrostates, this construction will lead to trees

of unbounded size. To obtain a �nite bound on the size of Safra trees, two merge

operations are performed, which we call \horizontal" and \vertical" (referring

to the usual display of trees). A horizontal merge causes deletion of a state

q in all macrostates for which also an older-brother macrostate with q exists.

(Empty macrostates arising in this way are deleted from the Safra tree.) This

makes brother macrostates disjoint, allowing at most jQj sons for a given parent.

The vertical merge, which will need some extra justi�cation, causes deletion of

all sons of a macrostate (with all their descendants) if the union of these son

macrostates equals the parent macrostate. When this happens, we say a \break-

point" is reached for the parent macrostate. Due to the vertical merge, the union

of brother-macrostates in Safra trees is always a proper subset of the associated

parent macrostate; thus the height (length of a longest path) of Safra trees is

bounded by jQj � 1.

Let us analyze the role of breakpoints in the context of the subset construction.

Assume that on a given input word, we start from some macrostateR

0

, reach after

reading input u

1

the macrostate Q

1

which contains a nonempty subset F

1

� F ,

and continuing the run (starting now with F

1

as son of Q

1

) reach after reading

v

1

a breakpoint, i.e. we reach a set R

1

from Q

1

and a set G

1

from F

1

such that

G

1

= R

1

. Clearly, in this situation, any state in R

1

is reachable by A from some

R

0

-state via u

1

v

1

with an intermediate visit in F (namely, in F

1

). Suppose we

continue in this way, as indicated in the �gure.

R

0

u

1

; Q

1

v

1

; R

1

u

2

;

u

i

; Q

i

v

i

; R

i

� =

: : :

� =

F

1

v

1

; G

1

F

i

v

i

; G

i

By R

i

= G

i

, F

i

v

i

; G

i

, F

i

� Q

i

, and R

i�1

u

i

; Q

i

one obtains (inductively on

i > 0): For all q 2 R

i

there is a p 2 R

0

such that A reaches from p the state q

32

via u

1

v

1

: : : u

i

v

i

, passing i times through F , namely, at least once on each of the

segments u

j

v

j

.

If between R

i

and R

i+1

(at breakpoints) more son macrostates (of �nal states)

are created than just F

i+1

, this claim holds by the same argument. Let us note

an interesting consequence:

Remark 5.5 Suppose R

0

; R

1

; : : : is a macrostate sequence of A, obtained by

starting in R

0

= fq

0

g and applying the subset construction, such that (for i > 0)

R

i

is the i-th breakpoint macrostate, reached after input w

1

: : :w

i

, respectively.

Then there exists a successful run of A on the !-word w

1

w

2

: : : .

Proof. For i > 0 and any q 2 R

i

pick an A-run on w

1

: : :w

i

from q

0

to q

which passes i times through F , namely at least once on each of the segments

w

j

(as shown above). These �nite runs form a tree which is �nitely branching

and in�nite. An application of K�onig's Lemma yields some (in�nite) run of A on

w

1

w

2

: : : with in�nitely many visits to F . 2

Thus, an in�nite sequence of breakpoints can serve to detect a successful

A-run. It will be seen that this method to detect successful A-runs is complete.

Proof of McNaughton's Theorem. Given the B�uchi automaton A =

(Q;A; q

0

;�; F) the desired Muller automaton B = (Q

B

; A; q

0B

; �;F) is de�ned

as follows: Let Q

B

be the set of all Safra trees over Q; these are ordered trees

labelled by Q-macrostates, such that brother macrostates are disjoint and their

union is a proper subset of the respective parent macrostate. We allow that any

macrostate in a Safra tree may be marked, say by \!" (which will indicate the

occurrence of breakpoints).

Formally, one distinguishes between a node of a Safra tree, which is named

by a positive natural number, and its label, which is either a macrostate or a

pair of a macrostate and the mark \!". Names of deleted nodes may be reused.

If there are at most m nodes in the Safra trees under consideration, names from

the set f1; : : : ; 2mg will be su�cient; the m extra names are used to handle

the interplay between deletion and creation of nodes correctly: If in a sequence

s

1

; s

2

; : : : of successive Safra trees (on some input) a node name k appears in

each tree, say labelled with macrostate R

1

; R

2

; : : : , respectively, then we shall

need that a thread of states q

1

; q

2

; : : : with q

i

2 R

i

indeed represents an A-

run on the considered input. If node names could be reused immediately after

deletion (e.g. due to horizontal merge) when a new node is to be created (due to

visits of �nal states), the A-runs would be confused. So we keep the names for

nodes which stay, but take for any newly created node a name which does not

occur in the previous Safra tree (using, if necessary, the reservoir of extra names

m+ 1; : : : ; 2m).

33

As initial state q

0B

one takes the Safra tree consisting just of the root

macrostate fq

0

g. For a given Safra tree s and an input letter a, the value �(s; a)

of the transition function � is determined in stages as mentioned above:

1. For any macrostate R in s with states from F add a node as youngest son,

labelled with macrostate R \ F ,

2. apply the subset construction, i.e., replace any macrostate R by the set

fq 2 Q j 9r 2 R (r; a; q) 2 �g

3. apply the horizontal and then the vertical merge as explained above, mark-

ing a parent macrostate with \!" if all sons are deleted by the vertical

merge.

Finally, let a set S of Safra trees be in the system F of �nal state sets if some

node k appears in all Safra trees of S, and k is marked by \!" at least once in S.

The proof is �nished by showing L

!

(A) = L

!

(B).

If B accepts the !-word �, then, by the de�nition of F , in the successful run

of Safra trees of B some node k �nally stays and is marked by \!" in�nitely often.

The argument of Remark 5.5 above, applied to the sequence R

1

; R

2

; : : : of the

macrostates which are labels of k at the \!"-indicated breakpoints, shows that

some A-run exists on � with in�nitely many visits to F . Hence A accepts �.

Conversely, suppose that A accepts �, say by a run � which passes through

the state q 2 F in�nitely often. Consider the Safra tree run of B on �. The root

macrostate of each Safra tree in this run is nonempty (since the root macrostate

of the i-th Safra tree contains �(i)). If the root is marked \!" in�nitely often

(let us call this the \easy case"), then B accepts by de�nition and we are done.

Otherwise, after the last occurrence of the mark \!" at the root (if marks existed

at all), state q 2 F will be reached at some later point (being visited in�nitely

often in �) and thus be put into a son macrostate of the root. From this point

onwards, the states of the run � appear in the macrostates of this son, or (due to

horizontal merge operations) get associated to older brothers of this son. Such a

shift to an older brother can happen only a �nite number of times, after which the

states of � will be associated to some �xed son of the root; note that the deletion

of this son itself by vertical merge is no more possible because the last breakpoint

of the root was already passed. If this son is marked \!" again and again, we are

done as in the \easy case" before. Otherwise, proceed with this son (in which q

occurs in�nitely often) in the same way as with the root above; as a consequence,

q will occur in�nitely often in the macrostates of some �xed grandson of the root.

Continuing in this way, the \easy case" (and hence acceptance by B) must apply

eventually; otherwise the height of the used Safra trees would increase beyond

the bound jQj � 1 (which is impossible). Thus B accepts �. 2

The deterministic automaton resulting from Safra's construction is presented

more concisely if one refers to the Rabin acceptance condition. The acceptance

34

condition can be formulated as requiring that some node name is missing only

�nitely often but occurs marked \!" in�nitely often. So we get a deterministic

Rabin automaton with accepting pairs (E

k

; F

k

), where E

k

contains the Safra trees

without node name k and F

k

contains the Safra trees with node name k marked

\!". In the next proposition we verify that the number of Safra tree nodes k may

be bounded by the number of states of the given B�uchi automaton, which yields

a tight complexity bound for determinization:

Proposition 5.6 Safra's construction converts a B�uchi automaton with n states

into a deterministic Rabin automaton with 2

O(n�log(n))

states and O(n) accepting

pairs.

Proof. Suppose a B�uchi automaton with state set Q = fq

1

; : : : ; q

n

g is given.

In a �rst step, we verify inductively on the height of Safra trees over Q that the

number of nodes in a Safra tree over Q is bounded by n. (This is trivial for height

0; in the induction step observe that the sons of the root de�ne Safra trees of

lower height over disjoint sets Q

i

of states. Thus, by induction hypothesis, the

cardinality of the whole Safra tree is bounded by (�

i

jQ

i

j)+1, which is � jQj(= n)

because

S

i

Q

i

is a proper subset of Q.) Consequently, as mentioned in the proof

above, the numbers 1; : : : ; 2n are su�cient as node names of Safra trees over Q,

and the constructed Rabin automaton has 2n accepting pairs. In a second step,

note that a state q

i

occurring in a Safra tree s belongs to the macrostates along a

unique path pre�x of s, starting at the root and ending at some node k. A Safra

tree is determined if to each q

i

this \last node" k is associated (or a dummy value

0 if q

i

does not occur in s) and, furthermore, the \parent function", the \next-

older-brother function", and the \!-function" on the set of nodes are known. The

latter functions associate to each node its parent node, its next-older brother (or

0 if none exists), and 1 or 0 as indicator of presence or absence of \!", respec-

tively. Altogether a Safra tree s is described by four maps, one from fq

1

; : : : ; q

n

g

to f0; : : : ; 2ng, the three others from f1; : : : ; 2ng to f0; : : : ; 2ng. The number

of combinations of such maps (and hence the number of possible Safra trees) is

thus bounded by (2n + 1)

n+3�2n

, which is in 2

O(n�log(n))

. 2

This complexity bound is optimal in the following sense:

Theorem 5.7 (cf. [Saf88]) There is no conversion of B�uchi automata with n

states into deterministic Rabin automata with 2

O(n)

states and O(n) accepting

pairs.

For the proof we use an elegant (and up to now unpublished) example of

Michel [Mic88], concerning the complexity of complementing nondeterministic

B�uchi automata. We present it before giving the proof of Theorem 5.7.

35

Theorem 5.8 ([Mic88]) There is a family (L

n

)

n�1

of !-languages such that

each L

n

is recognized by a B�uchi automaton with n + 2 states, and any B�uchi

automaton recognizing the complement of L

n

has � n! states.

Proof. We shall de�ne L

n

over the alphabet f1; : : : ; n;#g and consider

complementation relative to f1; : : : ; n;#g

!

. It is easy (when coding letter i by

0

i

1) to adapt the construction to the �xed alphabet f0; 1;#g, over which the

resulting !-language L

0

n

is recognized by a B�uchi automaton with a number of

states linear in n, but such that its complement w.r.t. f0; 1;#g

!

is not B�uchi

recognizable with < n! states.

Let L

n

be the !-language recognized by the following B�uchi automaton:

1,...,n,# 1,...,n,#

1,...,n,#

1,...,n,#

1

n

#

2

By the in-out-transitions to and from the �nal state, which have to be passed

in�nitely often within any successful run, the following remark is easily shown:

(�) � 2 L

n

i� there is a cycle (i

1

i

2

)(i

2

i

3

) : : : (i

k

i

1

) of letter-pairs such that each

letter-pair occurs in�nitely often as a segment of �.

Consequently, an !-word (i

1

: : : i

n

#)

!

does not belong to L

n

for any permu-

tation (i

1

: : : i

n

) of (1 : : : n).

Now let B be a B�uchi automaton which accepts the complement language

f1; : : : ; n;#g

!

n L

n

. Consider any two distinct permutations (i

1

: : : i

n

) and

(j

1

: : : j

n

) of (1 : : : n), so that B accepts the !-words � = (i

1

: : : i

n

#)

!

and

� = (j

1

: : : j

n

#)

!

. Choose successful runs of B on � and �, and suppose that

in the run on �, the automaton B �nally loops through the set R of states (with

some �nal state, say p), while in the run on � it �nally loops through the set S of

states. It su�ces to show that R and S are disjoint (then � n! pairwise disjoint

loops exist in B).

For a contradiction assume q 2 R\S. Using the two given runs, we build up a

new run through B which reaches q, loops through R such that an input segment

i

1

: : : i

n

is traversed at least once and also the �nal state p is visited, comes back

to q, loops through S such that an input segment j

1

: : : j

n

is traversed at least

once, comes back to q, and so on in alternation through R and S. This run is

accepting by its in�nitely many visits to p. The corresponding input however

contains (as we will show) a cycle as described in the characterization (�) of L

n

above; thus B accepts some !-word in L

n

, which gives the desired contradiction.

To verify the existence of a cycle as in (�), consider the �rst k where the

entries i

k

, j

k

of the two permutations are distinct. Then j

k

appears as i

l

for

36

some l > k, and i

k

appears as j

m

for some m > k. The claimed cycle of letter-

pairs occurring in�nitely often in may now be chosen as (i

k

i

k+1

); : : : ; (i

l�1

i

l

)

(= (i

l�1

j

k

)), (j

k

j

k+1

); : : : ; (j

m�1

j

m

) (= (j

m�1

i

k

)). 2

Proof of Theorem 5.7. Assume there is a conversion of B�uchi automata into

deterministic Rabin automata which transforms B�uchi automata with n states

into deterministic Rabin automata with 2

O(n)

states and O(n) accepting pairs.

Consider the deterministic Rabin automata which would be obtained in this way

from the B�uchi automata recognizing the languages L

n

. We shall convert such

a deterministic Rabin automaton R, say with 2

O(n)

states and with accepting

pairs (E

i

; F

i

) (1 � i � kn), into a nondeterministic B�uchi automaton B which

recognizes the complement of L

n

and has only 2

O(n)

states, contradicting the

previous theorem.

The automaton B has states of the form q and (q; I; J) where q is a state of

R and I; J are sets of indices from f1; : : : ; kng. The �rst component of such a

triple serves to simulate R, the other two to test that R's acceptance condition

fails. This means that a Streett condition holds: For all i 2 f1; : : : ; kng there

are in�nitely many visits to E

i

or only �nitely many visits to F

i

; in other words:

In�nitely many visits to F

i

imply in�nitely many visits to E

i

. By nondeterminism,

B guesses at which point the �nitely often visited states in a run are all passed

(\in�nity point"). This is implemented by switching from states q to states

(q

0

; I; J), beginning with I = J = ;. Afterwards R collects in the component I

the indices i for which visits to F

i

occur, similarly in the component J the indices

j for which visits to E

j

occur. Anytime when I � J holds, both components

are reset to ;. This happens in�nitely often beyond the in�nity point i� for all

i, in�nitely many visits to F

i

imply in�nitely many visits to E

i

, as was to be

checked. Since B has 2

O(n)

many states, the claim is proved. 2

Applications of the Safra determinization construction in obtaining (essen-

tially optimal) complexity bounds for logics of programs are given e.g. in [EJ88].

In [Saf92], Safra achieved a transformation of nondeterministic Streett automata

into deterministic Rabin automata with the same asymptotic blow-up as for non-

deterministicB�uchi automata; more precisely, a nondeterministic Streett automa-

ton with n states and h pairs in the acceptance component is converted into a

deterministic Rabin automaton with 2

O(nh�log(nh))

states and nh pairs. A gener-

alization of the Safra construction to asynchronous �nite automata (accepting

in�nite Mazurkiewicz traces) is presented in [KMS95].

5.3 Applications to De�nability and Decision Problems

As a �rst consequence of McNaughton's Theorem, we note the equivalence be-

tween B�uchi automata and MSO-logic over in�nite words (originally shown by

B�uchi without use of deterministic automata).

37

Theorem 5.9 (B�uchi's Theorem [B�u62])

An !-language is B�uchi-recognizable i� it is MSO-de�nable, and the transforma-

tion of B�uchi automata into MSO-formulas and conversely is e�ective.

Proof. Given a B�uchi automaton A, it is straightforward to formulate ac-

ceptance of an input !-word; the formula of the proof of Theorem 3.1 has to be

changed only in the acceptance part (the last conjunctive clause), which should

express that in�nitely often a �nal state occurs. For the converse, the proof of

Theorem 3.1 is easily copied, using McNaughton's Theorem for the complemen-

tation step. 2

Corollary 5.10 ([B�u62]) The theory S1S (of all MSO-sentences which are true

in the structure (!; S;<)) is decidable.

Proof. By Theorem 5.9, a given MSO-sentence ' (without letter predicates

Q

a

) is e�ectively transformed into an input-free B�uchi automaton A, such that '

is true in (!; S;<) i� A has some successful run. The latter is decidable because

a successful run exists i� there is some state q in A which is reachable from the

initial state and such that q is reachable from q via a nonempty path. 2

Let us look more closely into the formulas which arise from the proof above

and from the application of McNaughton's Theorem. We consider an alphabet

A = f0; 1g

n

and a de�ning MSO-formula '(X

1

; : : : ;X

n

) (interpreted in !-words

over this alphabet). By Theorem 5.9 it can be rewritten as a formula which

describes the acceptance by a B�uchi automaton, i.e. in the form

9Y

0

: : :9Y

k

(I[Y (0)] ^ 8x8y(S(x; y)! H[Y (x);X(x); Y (y)])

^ 8x9y(x < y ^K[Y (y)]));

here the formula I[Y (0)] is a boolean combination of formulas Y

i

(0) (using the

constant 0 for convenience), and similarly H[Y (x);X(x); Y (y)] and K[Y (y)] are

boolean combinations of the indicated atomic formulas. We obtain an EMSO

formula, or (in the terminology of pre�x normal forms) a �

1

1

-formula.

McNaughton's Theorem yields an additional reduction, from MSO-logic to

weak MSO-logic, where set quanti�ers range only over �nite sets. For simplicity,

we apply McNaughton's Theorem in the form which yields, given a B�uchi au-

tomaton as described by the formula above, a deterministic Rabin automaton R,

say with a list
 of accepting pairs (E

1

; F

1

); : : : ; (E

m

; F

m

). For each E

i

(resp. F

i

),

consider the usual �nite automaton A

i

(resp. B

i

) with the same transition graph

as R but �nal state set E

i

(resp. F

i

). For each A

i

one can write down a formula

'

i

(X

1

; : : : ;X

n

; y) which expresses in an !-word model � that the pre�x of � up

to (and excluding) y is accepted by A

i

. For this, one simply has to relativize

each quanti�er occurring in the automata normal form for A

i

to the segment

[0; y). Formally one replaces a quanti�er such as 9z : : : by 9z(z < y ^ : : :) and

38

8z : : : by 8z(z < y ! : : :), whence '

i

is called bounded in y. Similarly, obtain

i

(X

1

; : : : ;X

n

; y) from B

i

, also bounded in y. Hence we have the following result:

Proposition 5.11 Any MSO-formula '(X

1

; : : : ;X

n

) is equivalent (over !-

words from (f0; 1g

n

)

!

) to a formula

m

_

i=1

(9x8y(x < y ! :'

i

(X

1

; : : : ;X

n

; y)) ^ 8x9y(x < y ^

i

(X

1

; : : : ;X

n

; y)))

where the '

i

and

i

are bounded in y.

Proof. It su�ces to note that the A

i

and B

i

introduced above are determin-

istic and have the same state graphs; thus all formulas '

i

and

i

speak indeed

about the same run on the input !-word, and the disjunction expresses that R

accepts the input word under consideration. 2

When quanti�er complexity is measured only in terms of unbounded quanti-

�ers, this result yields a reduction of the �

1

1

-formulas arising from B�uchi automata

to boolean combinations of �

0

2

-formulas. Furthermore, we observe that the set

quanti�ers in '

i

,

i

, which refer to the (�nite!) runs of A

i

and B

i

, range only

over �nite sets.

Corollary 5.12 Any MSO-formula '(X

1

; : : : ;X

n

) is equivalent (over !- words)

to a weak MSO-formula.

Proposition 5.11 can be interpreted also in topological terms, referring to

the Cantor topology on the space of all !-words over a given alphabet (see the

chapter on !-languages of this Handbook, [Mos80], or [TL94] for de�nitions).

While recognition of an !-language L by a nondeterministic B�uchi automaton

shows that L is \projective", the recognition by a deterministic Muller or Ra-

bin automaton puts L into the boolean closure of the second level of the Borel

hierarchy.

The disjunctions of Proposition 5.11 lead to a classi�cation of !-languages,

in which the complexity of these formulas (e.g., given by the parameter m) is

connected with structural properties of deterministic Muller automata. This

theory was initiated by Landweber [Lan69], continued by Staiger and Wagner

[SW74], and culminated in a deep structure theory of !-automata by Wagner

[Wag79]. Wagner showed that all deterministic Muller automata accepting a

�xed !-language share a structural invariant, which refers to the chains of strongly

connected subsets of the transition graphs (ordered by set inclusion), and is given

by the maximal number of alternations between accepting and nonaccepting sets

in such a chain. To take a simple example, if the formula of Proposition 5.11

describes a deterministic B�uchi automaton (which means that m = 1 and only

the

1

-part of the formula is present), then corresponding Muller automata have

39

systems F of �nal (strongly connected) state sets which are upward closed with

respect to set inclusion, and thus there are no strongly connected sets R � S

with R 2 F and S 62 F . As a consequence of this theory, the Rabin index of

a regular !-language L is e�ectively computable, which is the minimal m such

that a disjunction of length m as above in Proposition 5.11 de�nes L. E�cient

procedures to determine the Rabin index are developed in [WY95] and [KPB95].

If in Proposition 5.11 we replace the quanti�ers 9x8y(x < y ! : : :) by 8y : : :

and 8x9y(x < y ^ : : :) by 9y : : : , then formulas arise which characterize the

Staiger-Wagner-recognizable !-languages. A beautiful result of [SW74] states

that membership of a regular !-language in this class is decidable and that these

!-languages are precisely those sets L such that L and its complement are both

recognized by deterministic B�uchi automata.

Another variant of the formulas in Proposition 5.11 is obtained with boolean

combinations of statements \there are � k segments w" and \there are in-

�nitely many segments w". As in the theory of classical formal languages, the

!-languages de�ned by such statements are called locally threshold testable, and

�nitely locally threshold testable when conditions of the second type are excluded.

As for �nite words, the �nitely locally threshold testable !-languages coincide

with those de�nable in FO[S]-logic, the �rst-order logic of successor. Wilke

showed in [Wil93] that an !-language is �nitely locally threshold testable i�

it is both locally threshold testable and Staiger-Wagner recognizable. Since the

latter two properties are decidable (by [BP89] and [SW74]), so is the �rst, and

we may conclude that one can decide e�ectively whether a regular !-language is

de�nable in FO[S]-logic.

B�uchi's Theorem 5.9 has been re�ned and extended in many ways. For ex-

ample, a transfer from !-words to in�nite Mazurkiewicz traces was achieved by

Ebinger and Muscholl in [EM96]. In the sequel we discuss in a little more detail

two logical systems which are applied in the veri�cation of (nonterminating �nite-

state) programs, namely propositional temporal logic and monadic second-order

logic over timed words.

Propositional temporal logic PTL is a version of �rst-order logic over !-word

models where quanti�ers over \positions" or \time instances" are captured by

temporal operators. One obtains a variable-free notation, reecting the fact that

the reference to such quanti�ed positions is very restricted. The standard op-

erators are X (\next"), F (\eventually"), G (\always"), and U (\until"). PTL-

formulas are built up inductively from propositional variables p

1

; p

2

; : : : by ap-

plication of boolean connectives, the unary temporal operators X, F, G, and the

binary operator U. If the propositional variables p

1

; : : : p

n

are used, the resulting

formulas are interpreted in !-words over the alphabet f0; 1g

n

. To give an idea of

the semantics of PTL-formulas, consider the following example:

Example 5.13 The property of !-words over f0; 1g

2

de�ned by the condition

\after any letter with �rst component 1 there appears another letter with �rst

40

component 1 such that between them only letters with second component 0 occur"

is formalized by the PTL-formula G(p

1

! X((:p

2

)Up

1

)).

In general, we introduce the semantics of PTL-formulas ' with propositional

variables p

1

; : : : ; p

n

concisely by associating with them certain �rst-order formu-

las '

0

(X

1

; : : :X

n

; x), to be interpreted in !-words over f0; 1g

n

\from position x

onwards". (For a more detailed and standard introduction see e.g. [Em90] or

[MP92].) For ' = p

i

we have '

0

(x) = X

i

(x), and the boolean connectives are

handled as usual. Given PTL-formulas ', we set

� (X')

0

(x) = 9y(S(x; y) ^ '

0

(y))

� (F')

0

(x) = 9y(x � y ^ '

0

(y))

� (G')

0

(x) = 8y(x � y ! '

0

(y))

� ('U)

0

(x) = 9z(x � z ^

0

(z) ^ 8y(x � y < z! '

0

(y))).

Finally, we say that an !-word � 2 f0; 1g

n

satis�es ' if (�; 0) j= '

0

(x), and an

!-language L � f0; 1g

n

is called PTL-de�nable i� for some PTL-formula ' with

propositional variables p

1

; : : : ; p

n

the set L contains precisely those !-words over

f0; 1g

n

which satisfy '.

By the above de�nition, each PTL-de�nable !-language is �rst-order de�n-

able. A di�cult and rather technical result states that the converse is also true:

Theorem 5.14 (Kamp [Kam68], see also [GHR94])

An !-language is PTL-de�nable i� it is �rst-order de�nable (in the signature with

S and <).

Despite the practical advantage of short formalizations of interesting prop-

erties (see the Example above), a certain weakness of the temporal framework

is the fact that the (implicit) quanti�cations are all unbounded towards in�n-

ity, except for the bounded quanti�cation appearing in the until-operator. This

makes it hard to formalize properties of �nite segments of !-words, e.g. of �nite

pre�xes. A remedy for this is the introduction of past operators which, given a

word position as reference point, refer back to the pre�x up to this point. In anal-

ogy to the \future operators" introduced before one can introduce past operators

(namely, \previous", \once", \has always been", and \since"), which allow to

express �rst-order properties of pre�xes more easily. If only these temporal oper-

ators referring to the past are used, one speaks of a past formula ([MP92]). The

use of past formulas makes it possible to put PTL-formulas into a normal form as

presented in Proposition 5.11 above. Since in the �rst-order framework the ana-

logue of this normal form also holds ([Th81]), it turns out that any PTL-formula

can be written as a disjunction of formulas FG'^GF with past-formulas '; .

41

In [MP92], applications of this representation to �nite-state program veri�cation

are studied.

Another classi�cation of PTL-de�nable properties is obtained by cancelling

certain temporal operators. If the \next"-operator is not admitted, for instance,

then only \stutter invariant" !-languages become de�nable, in which two !-words

are not distinguished when they can be made equal by shrinking or extending

nonzero blocks of identical letters. An interesting class of !-languages arises

by cancelling the \until"-operator from PTL; an automata theoretic (and semi-

group theoretic) analysis of this restricted temporal logic RTL is carried out in

[CPP93]. Recently, an in�nite hierarchy based on the nesting of \until"-operators

was established in [EW96], providing also further characterizations of restricted

temporal logics by structural properties of corresponding automata.

The unidirectional (or \one-way") character of PTL's future operators (\from

now to in�nity") is useful for the translation of PTL-formulas into !-automata,

essentially because automata also work in a one-way mode. Indeed, for PTL a

more direct construction is possible than for general MSO-formulas (or general

�rst-order formulas). It is no more necessary to follow the inductive structure

of a given formula, in particular to apply determinization for each negation step

(which causes an exponential blow-up each time negation is applied over existen-

tial quanti�cation). Instead, for PTL-formulas one can build a B�uchi automaton

which keeps track of the satisfaction of all subformulas of the given formula si-

multaneously while reading an input word. (The set of subformulas of a given

formula is called its Fischer-Ladner closure, and the construction of a model

given by truth-values for all subformulas a Hintikka structure.) Hence, the state

space is essentially the set of truth-value vectors where each component refers to

a speci�c subformula of the given formula. For instance, components referring to

complementary subformulas : and will have complementary values at each

position of a run. Nondeterminism is applied to guess claims about the future

correctly, e.g. that a subformula F or 'U is true; such \obligations" have to be

veri�ed at later points in a run. Some book-keeping is necessary for this, which

means that auxiliary truth-value components have to be added (however not more

than there are subformulas). Altogether, the following result is obtained:

Theorem 5.15 (cf. [LPZ85], [VW94]) PTL-formulas of length n can be trans-

lated e�ectively into equivalent B�uchi automata with 2

O(n)

states (and in time

2

O(n)

); consequently, the satis�ability problem for PTL is solvable in exponential

time.

More powerful logics allow the same basic construction, for example the ex-

tension of PTL by \automaton operators", which increase the expressive power to

capture full MSO-logic (or B�uchi automata). The complexity of satis�ability of

PTL-formulas is PSPACE-hard ([SC85]); in this sense the bound of the Theorem

is optimal.

42

In program veri�cation, the result is applied for \PTL-model-checking", which

means to check that all computation paths of a �nite-state program P satisfy

a given PTL-formula '. In automata theoretic terms, one checks that the !-

language of computation paths through P is contained in the !-language de�ned

by '. Via the above translation, this can be achieved in a time which is polyno-

mial in the size (number of states) of P and exponential in the length of '. For

more details and for applications in practical veri�cation tasks, the reader should

consult speci�c surveys and monographs such as [Em90], [McM93], [CGL94],

[Kur94], [Em96], [Var96].

In practice, the veri�cation of nonterminating systems requires to check more

complex computation properties than simply a correct order of events or states in

time, as expressible in PTL or MSO-logic. Often, the speci�cation of a program

involves also conditions on admissible time intervals or durations of states. There

is by now a large number of logics and automata models which incorporate such

aspects, e.g. the timed automata of Alur and Dill [AD94]. (For an overview

of the �eld see [AH93].) The underlying models are timed words, extending

classical !-words. A timed word is an !-sequence of letters (\states") together

with a sequence of strictly increasing non-negative real numbers, such that the

i-th number indicates the beginning of the lifetime of the i-th state. In this

framework, a natural extension of B�uchi's Theorem is presented by Wilke in

[Wil94]; it o�ers a logic in which time bounds given by natural numbers k are

expressible, e.g. statements of the type \there is a time instance < x belonging

to a set X such that the time interval from the greatest such instance in X up

to x is bounded by k". First-order and monadic second-order quanti�cations are

allowed, with the exception that set variables X used in statements of the type

above appear only in a leading block of existential set quanti�ers. Wilke showed

that this \MSO-logic of relative distance" characterizes the expressive power of

the timed automata in the sense of Alur and Dill [AD94]; the decidability of the

emptiness problem for these automata implies that also the satis�ability problem

for this timed MSO-logic is decidable.

6 Automata and MSO-Logic on In�nite Trees

Rabin showed in [Rab69] that the correspondence between automata and MSO-

formulas can be lifted from the domain of in�nite words to the domain of in�nite

trees. As a consequence, the monadic second-order theory S2S of two successor

functions turned out to be decidable. The intricate proof as well as its main con-

clusion, the decidability of a powerful theory, served as starting point of many

papers which clari�ed further the relation between logic and automata and ob-

tained applications in several areas. The core of Rabin's work is a complemen-

tation theorem for nondeterministic �nite automata on in�nite trees. In the �rst

two parts of this section we give a fairly self-contained proof, which follows a

43

game theoretical approach suggested by B�uchi [B�u77], [B�u83] and Gurevich and

Harrington [GH82], and uses more recent work of [EJ91], [Mst91a], [McN93],

[Th95], and [Zie95]. The last section presents some logical applications.

6.1 Automata on In�nite Trees

We shall consider �nite tree automata working \top-down" on in�nite input trees.

Transitions are of the form (q; a; q

0

; q

00

), allowing to pass from state q at node u

with input-tree label a to the states q

0

; q

00

at the successor nodes u0; u1, respec-

tively. In this way a run is built up. The acceptance condition is a requirement

on the state sequences along the paths of the given run, and thus it has the same

format as in !-automata. Again, many di�erent types of acceptance conditions

are possible. For the sequel we shall start with the Muller acceptance condition.

De�nition 6.1 A Muller tree automaton is of the form A = (Q;A; q

0

;�;F)

where Q;A; q

0

;F are given as for (sequential) Muller automata, and � � Q �

A � Q � Q is the transition relation. A run of A on the tree t 2 T

!

A

is a tree

� 2 T

!

Q

, satisfying �(�) = q

0

and (�(w); t(w); �(w0); �(w1)) 2 � for w 2 f0; 1g

�

.

The run � is successful if for each path � 2 f0; 1g

!

we have In(�j�) 2 F , i.e.,

along each path of � the Muller acceptance condition is satis�ed. The automaton

A accepts the tree t if there is a successful run of A on t. The tree language

recognized by A is the set T

!

(A) = ft 2 T

!

A

j A accepts tg.

Other acceptance conditions as known from !-automata, like the B�uchi condition,

Rabin condition, Streett condition, are introduced accordingly. It turns out that

Muller, Rabin, and Streett tree automata have the same expressive power. (An-

other approach to acceptance conditions over in�nite trees is studied in [BN95];

the requirement that all paths of a run should be successful is replaced there by

a condition on the cardinality of the set of successful paths, for instance to be

in�nite or uncountable.)

Let us look at two simple examples, which also show that B�uchi tree automata

are strictly weaker than Muller tree automata.

Example 6.2 We describe a Muller tree automaton which recognizes the set

T

1

= ft 2 T

!

fa;bg

j some path through t carries in�nitely many bg:

The Muller tree automaton has three states q

0

; q

1

; q

+

of which q

0

; q

1

serve to

guess a path down the input tree, such that q

0

signals that a was seen last and

q

1

that b was seen last. On nodes outside the guessed path, state q

+

is assumed.

Thus, we use the following list of transitions (with i 2 f0; 1g): (q

i

; a; q

0

; q

+

),

(q

i

; a; q

+

; q

0

), (q

i

; b; q

1

; q

+

), (q

i

; b; q

+

; q

1

), (q

+

; a; q

+

; q

+

), (q

+

; b; q

+

; q

+

). The system

of �nal state sets should then consist of the sets fq

0

; q

1

g; fq

1

g; fq

+

g. Using the

B�uchi acceptance condition, it su�ces to specify fq

1

; q

+

g as �nal state set.

44

Let us see that the complement T

2

of T

1

is recognizable by a Muller tree

automaton, however not by a B�uchi tree automaton ([Rab70]).

Example 6.3 The tree language

T

2

= ft 2 T

!

fa;bg

j each path through t carries only �nitely many bg

is Muller recognizable (and hence Rabin recognizable), but not B�uchi recogniz-

able: An appropriate (deterministic) Muller tree automaton has two states q

0

; q

1

which signal that a, resp. b was seen last (using the transitions (q

i

; a; q

0

; q

0

),

(q

i

; b; q

1

; q

1

)). The system of �nal state sets consists only of fq

0

g. Now for con-

tradiction suppose that T

2

is recognized by a B�uchi tree automaton A, say with n

states and with �nal state set F . Consider the input tree t from T

!

fa;bg

which has

label b exactly at the nodes from 1

+

0, 1

+

01

+

0; : : : ; (1

+

0)

n

. Thus label b occurs

when a left successor is taken after a sequence of right successors, however allow-

ing at most n left turns. Clearly t belongs to T

2

. Consider a successful run � of A

on t. Since a �nal state is visited in�nitely often on the path 1

!

of �, we may pick

m

0

such that �(1

m

0

) 2 F . Similarly, on the path 1

m

0

01

!

in�nitely many visits to

F occur, and thus we may pick m

1

such that �(1

m

0

01

m

1

) 2 F . Continuing in this

way, we obtain a visit to F at n + 1 nodes 1

m

0

, 1

m

0

01

m

1

; : : : ; 1

m

0

01

m

1

0 : : : 1

m

n

.

Thus a state repetition must occur, say at nodes u and v from this set. By con-

struction, on the �nite path segment of t from u to v the label b occurs (namely,

after a left turn). Now form a new input tree t

0

by repeating this �nite path

segment from u (inclusive) to v (exclusive) inde�nitely, copying also the subtrees

which have their roots on this path segment. On the in�nite path constructed

from these segments, label b occurs in�nitely often; thus t

0

is not in T

2

. However,

the automaton A accepts t

0

; a successful run is easily constructed from � using

the coincidence of states at nodes u and v. This contradicts the assumption that

A recognizes T

2

.

We now turn to the complementation problem for automata on in�nite trees.

The solution is simpli�ed considerably when we use a seemingly more complicated

acceptance condition, the \Rabin chain condition" (introduced by Mostowski

[Mst84], [Mst91a]), also called \parity condition" (introduced independently by

Emerson and Jutla [EJ91]). The idea is to �x the �nal state sets not by listing

their states separately in each case, but to use a more uniform scheme based on a

global indexing of the states. The minimal index of a state within a set of states

already determines whether the set as a whole is accepting or not.

De�nition 6.4 A Rabin chain tree automaton (or parity tree automaton) is pre-

sented in the form A = (Q;A; q

0

;�;
) where Q;A; q

0

;� are given as for Muller

tree automata, and

 : E

1

� F

1

� E

2

� F

2

� : : : � E

n

� F

n

45

is a strictly increasing chain of sets of states from Q. A run � of the automaton

is successful if for each path � there is some k such that

(�) In(�j�) \ E

k

= ; and In(�j�) \ F

k

6= ;.

Equivalently, the states in E

i

n F

i�1

are indexed by 2i � 1 and the states in

F

i

n E

i

by 2i, and a set In(�j�) of states is accepting (on the path �) i� the

minimal index of states in In(�j�) is even (\parity condition").

Rabin chain tree automata are easily converted into Muller tree automata:

Given a Rabin chain tree automaton with acceptance component
, �x a system

F of �nal state sets by including all sets F which satisfy the Rabin chain condition

(�), applied to F in place of In(�j�). The converse is also true ([Mst91b], [Car94]).

We give a simple proof, using a data structure of B�uchi [B�u83].

Theorem 6.5 For any Muller tree automaton one can construct an equivalent

Rabin chain tree automaton.

Proof. Let A = (Q;A; q

0

;�;F) be a Muller tree automaton, assuming

without loss of generality that Q = f1; : : : ; ng and q

0

= 1. The states of the

desired Rabin chain tree automaton A

0

will be permutations of (1 : : : n) together

with an index from f1; : : : ; ng. This data structure was introduced by B�uchi

[B�u83] under the name \order-vector with hit". The idea is to keep a record of

the states in the order of their \last visits" (as in the \later appearance record"

LAR of Gurevich-Harrington [GH82]), together with a pointer to the position

where the last change in this record occurred (the \hit position"). In the sequel,

we indicate an order-vector with hit h in the form ((i

1

: : : i

n

); h), or sometimes

more concisely as (i

1

: : : i

h

: : : i

n

), where (i

1

: : : i

n

) is a permutation of (1 : : : n).

Let us explain this data structure by an example. Assume Q = f1; 2; 3; 4g,

and that a sequence 1 3 4 2 3 1 3 3 1 : : : of states over Q is built up, looping

�nally through the state set f1; 3g. We start with an order-vector whose last

state is 1, indicating that the run over Q begins with 1, and which elsewhere is

arbitrary, say (2341). The next vector is always obtained by shifting the new

momentary state of Q towards the right and setting the hit to the position from

where in the previous vector this state was taken. In the example, we obtain,

starting from (2341), the vectors (2413), (2134), (1342), (2413), (2431), (2413),

etc. It is clear that in our case where from some point onwards only the states 1; 3

are visited, these two remain at the two last positions of the order-vector, the hit

will �nally assume only positions 3 and 4, and in�nitely often the hit will be on

the penultimate position with states 1; 3 in some order listed from there onwards.

In general, one veri�es the following claim, which allows to extract the set of

in�nitely often visited states from the information provided by the order-vectors

and their hit positions:

46

Remark 6.6 Let j

0

j

1

j

2

: : : be a sequence of states from f1; : : : ; ng and j

0

0

j

0

1

j

0

2

: : :

be the corresponding sequence of order vectors with hit positions. Then

In(j

0

j

1

j

2

: : :) = F (say with jF j = k) i� the sequence j

0

0

j

0

1

j

0

2

: : : satis�es:

1. only �nitely often the hit is < (n � k) + 1,

2. in�nitely often the hit is (n � k) + 1, such that the order-vector entries at

positions (n� k) + 1; : : : ; n form the set F .

This motivates the de�nition of the desired Rabin chain tree automaton A

0

over the set of order-vectors with hit; the indexing of these states by the hit

(which amounts to the indexing of �nal state sets by their cardinality) supplies

a scale as needed for introducing the Rabin chain acceptance condition.

The state set of A

0

is the set of order-vectors over Q = f1; : : : ; ng with hit

position, the initial state is (2 : : : n 1). If (i; a; i

0

; i

00

) 2 �, then all transitions of

the following form are put into the transition relation �

0

of A

0

:

(((i

1

: : : i

n�1

i); h); a; ((i

0

1

: : : i

0

n�1

i

0

); h

1

); ((i

00

1

: : : i

00

n�1

i

00

); h

2

));

where (i

0

1

: : : i

0

n�1

i

0

), (i

00

1

: : : i

00

n�1

i

00

) are obtained from (i

1

: : : i

n�1

i) by shifting i

0

,

resp. i

00

, to the right and where h

1

is the position of i

0

in (i

1

: : : i

n�1

i) and h

2

the position of i

00

in (i

1

: : : i

n�1

i). Finally, following the above Remark, the Rabin

chain acceptance condition is given by the chain
 := E

1

� F

1

� : : : � E

n

� F

n

where E

i

is the set of order-vectors with hit < i or of order-vectors with hit i

such that the entries from position i onwards do not form a set in F ; on the other

hand, F

i

is the union of E

i

with the set of all order-vectors with hit i such that

the entries from position i onwards do form a set in F . It may happen that some

di�erence sets F

i

n E

i

or E

i+1

n F

i

are empty; if F

i

= E

i

or if E

i+1

= F

i

then we

drop the two sets (F

i

and E

i

, respectively E

i+1

and F

i

) to ensure that the Rabin

chain is proper. It is now easy to check (using the Remark above) that A

0

accepts

the same trees as A. 2

6.2 Determinacy and Complementation

In this section we show that the class of Rabin chain recognizable tree languages

is closed under complement.

For this, a game theoretic view of tree automata acceptance is used. With

any tree automaton A = (Q;A; q

0

;�;
) and any input tree t one associates an

\in�nite two-person game" �

A;t

. It is played by two players, named \Automaton"

and \Path�nder" (following [GH82]), on the tree t. A play of the game is given

by an in�nite sequence of actions performed by the players in alternation: First

Automaton picks a transition from � which can serve to start a run at the root

of the input tree, then Path�nder decides on a direction (left or right) to proceed

47

to a son of the root, upon which Automaton chooses again a transition for this

node (compatible with the �rst transition and the input tree); then Path�nder

reacts again by branching left or right from the momentary node, etc. Thus a

sequence of transitions (and hence a state sequence from Q) is built up along a

path chosen by Path�nder. Automaton wins the play if the constructed state

sequence satis�es the acceptance condition, otherwise Path�nder wins. Player

Automaton tries to realize the acceptance condition, while Path�nder tries to

avoid this.

Formally, it is convenient to describe a play as a sequence of \game posi-

tions". A game position where Automaton has to act is a triple of the form

(tree node w; tree label t(w); state q at w). By choice of a transition � of the

form (q; t(w); q

0

; q

00

), a game position of Path�nder is reached, which is the triple

(tree node w; tree label t(w); transition � at w). Path�nder's choice of a direc-

tion will re-establish a game position for Automaton, consisting of tree node w0

or w1, the corresponding tree label, and a new state (q

0

, respectively q

00

, induced

by the transition � chosen before). The standard initial position of the play is

Automaton's position (�; t(�); q

0

).

The game �

A;t

is presentable as an in�nite graph consisting of all game posi-

tions as vertices, such that an edge connects position p

1

to position p

2

if an admis-

sible action transforms p

1

into p

2

. Automaton and Path�nder can be imagined

to move in alternation a token through this in�nite graph along edges, building

up an in�nite play.

A strategy from position p for the player Automaton, respectively Path�nder,

is a function which for any �nite path from p to a position p

0

(of Automaton,

respectively Path�nder) gives as value a position which is reachable from p

0

via

an edge. A winning strategy of Automaton, respectively Path�nder, from p is a

strategy from p which leads to a win of any play, whatever the actions chosen by

the adversary (Path�nder, respectively Automaton) are. A successful run of A

on t immediately yields a winning strategy for Automaton in �

A;t

: Along each

path the suitable choice of transitions is �xed by the run. Conversely, a winning

strategy for Automaton in �

A;t

clearly provides a method to build up a successful

run of A on t. Thus we reach the following game theoretic formulation of tree

automaton acceptance:

Remark 6.7 The tree automaton A accepts the input tree t i� in the game

�

A;t

there is a winning strategy for player Automaton from the initial position

(�; t(�); q

0

).

Complementation of tree automata means to express the condition that a

given automaton A does not accept t by acceptance of another automaton. In

view of Remark 6.7 this means to conclude from nonexistence of a winning strat-

egy for Automaton in �

A;t

the existence of a winning strategy for Automaton in

a di�erent game �

B;t

(such that B depends only on A but not on t). For this,

48

we shall proceed in two steps: First we show that if Automaton has no winning

strategy in �

A;t

, then Path�nder has a winning strategy (from the standard initial

position). Secondly, Path�nder's strategy is converted to an Automaton strategy.

The �rst step means to prove that the games �

A;t

are determined, i.e., that at

least one player has a winning strategy from any given position.

A simple kind of winning strategy will su�ce if the tree automaton accepts

by the Rabin chain condition, as we assumed. It will turn out that \memoryless"

winning strategies are enough. A function is called a memoryless strategy if its

values depend only on the last positions of the �nite initial plays which are given

as arguments. In the graph theoretic framework, a memoryless strategy, say for

Automaton, is simply given by a subset of the game graph's edge set, such that

exactly one outgoing edge remains for any of Automaton's positions.

The above-mentioned �rst step in the complementation of tree automata is

the following result on memoryless determinacy of Rabin chain games, proved in

detail later in this section.

Theorem 6.8 (Determinacy of Rabin Chain Tree Automata Games, [EJ91],

[Mst91a])

Let A be a Rabin chain tree automaton and t be an input tree for A. Then in

�

A;t

, from any game position either Automaton or Path�nder has a memoryless

winning strategy.

Let us apply the theorem to establish complementation for Rabin chain tree

automata. It will involve the step from a Path�nder strategy to an Automaton

strategy.

Theorem 6.9 (Complementation of Rabin Chain Tree Automata)

For any Rabin chain tree automaton A over the alphabet A one can construct

e�ectively a Muller tree automaton (and hence also a Rabin chain tree automaton)

B which recognizes T

!

A

n T (A).

Proof. Let A = (Q;A; q

0

;�;
) be a Rabin chain tree automaton. We have

to �nd a (Muller) tree automaton B accepting precisely the trees t 2 T

!

A

which

are not accepted by A. We start with the following equivalences: For any tree

t, A does not accept t i� (by Remark 6.7) Automaton has no winning strategy

from the initial position (�; t(�); q

0

) in �

A;t

i� (by Theorem 6.8)

(+) in �

A;t

, Path�nder has a memoryless winning strategy from (�; t(�); q

0

).

We reformulate (+) in the form \B accepts t" for some tree automaton B.

We start from the observation that Path�nder's strategy is a function f from

the set f0; 1g

�

� A � � of his game positions into the set f0; 1g of directions.

Decompose this function into a family (f

w

: A �� ! f0; 1g) of \local instruc-

tions", parametrized by w 2 f0; 1g

�

. The set I of possible local instructions

i : A � � ! f0; 1g is �nite, and thus Path�nder's winning strategy can be

49

coded by the I-labelled tree s with s(w) = f

w

. Let s

^

t be the corresponding

(I �A)-labelled tree with s

^

t(w) = (s(w); t(w)) for w 2 f0; 1g

�

.

Now (+) is equivalent to the following:

There is an I-labelled tree s such that for all sequences �

0

�

1

: : : of

transitions chosen by Automaton and for all (in fact for the unique)

� 2 f0; 1g

!

determined by �

0

�

1

: : : via the strategy coded by s, the

generated state sequence violates the Rabin chain condition
.

A reformulation of this yields:

(1) There is an I-labelled tree s such that s

^

t satis�es:

(2) for all � 2 f0; 1g

!

(3) for all �

0

�

1

: : : 2 �

!

(4) if the sequence sj� of local instructions applied to

the sequence of tree labels tj� and to the transition se-

quence �

0

�

1

: : : indeed produces the path �, then the

state sequence determined by �

0

�

1

: : : violates
.

Condition (4) describes a property of !-words over I �A���f0; 1g which

obviously can be checked by a sequential Muller automaton M

4

, independently

of t. Condition (3) describes a property of !-words over I � A � f0; 1g, which

results from (4) by a universal quanti�cation (equivalently, by a negation, a pro-

jection, and another negation). By the established closure properties of Muller

recognizable !-languages, (3) is checked by a sequential and deterministic Muller

automaton M

3

. Now Condition (2) de�nes a property of (I �A)-labelled trees,

which can be checked by a deterministic Muller tree automaton M

2

, simulating

M

3

along each path. (Note that, by determinism of M

3

, theM

3

-runs on di�er-

ent paths of an (I �A)-labelled tree agree on the respective common pre�x and

hence can be merged into one run of M

2

.) Finally, applying nondeterminism, a

Muller tree automaton B can be built which checks Condition (1), by guessing a

tree s on the input tree t and working on s

^

t likeM

2

.

Note that by its construction fromM

4

, B does not depend on the tree t under

consideration. Thus B accepts precisely those trees which A does not accept, as

was to be shown. 2

It remains to verify the Determinacy Theorem. We refer to the abstract

setting of countable game graphs, using terminology and ideas from [GH82],

[McN93], [Th95], [Zie95]. The players are now named 0 and 1 (instead of Au-

tomaton and Path�nder).

De�nition 6.10 A game graph is of the form G = (V

0

; V

1

; E; c; C), where V

0

; V

1

are disjoint at most countable sets of vertices (we always set in this case V :=

V

0

[V

1

) and E � (V

0

� V

1

) [(V

1

� V

0

) is an edge relation such that for each

vertex the set of outgoing edges is nonempty and �nite. Furthermore, c : V ! C

50

is a map, called coloring, into a �nite set C of colors. A game is a pair (G;Win)

consisting of such a game graph G and an !-language Win � C

!

, called winning

set. The set V

i

is intended as the set of game positions where it is the turn of

player i to move. A play is a sequence 2 V

!

with ((i); (i + 1)) 2 E for

i � 0. Player 0 wins the play if the associated !-word c((0))c((1)) : : : of

colors belongs to Win.

The condition that for each vertex there is an outgoing edge serves to avoid

deadlocks in plays. The notions of strategy and winning strategy are de�ned as

before. Recall that a memoryless strategy, say for player 0, is given by a subset

of the edge set E which leaves precisely one out-edge for any vertex in V

0

.

Example 6.11 Given a Rabin chain tree automaton A = (Q;A; q

0

;�;
), the

game �

A;t

is of the form above: Take Automaton to be player 0 and Path�nder

to be player 1, and specify the game graph as follows: Let V

0

be the set of triples

(w; t(w); q) 2 f0; 1g

�

�A�Q, V

1

the set of triples (w; t(w); �) 2 f0; 1g

�

�A��.

Fix the edge relation E in the natural way so that succeeding game positions

match and are also compatible with t, and de�ne the color of a triple (w; t(w); q),

resp. (w; t(w); (q; a; q

0

; q

00

)), to be the state q. The winning set collects those state

sequences which satisfy
.

Example 6.12 Given an input-free Rabin chain tree automaton A =

(Q; q

0

;�;
) with � � Q�Q�Q, de�ne a simpler game �

A

, in which the tree t

and the parameter w in the game positions are suppressed: Let V

0

= Q, V

1

= �,

and �x E in analogy to the previous example, collecting the edges (q; (q; q

0

; q

00

)),

((q; q

0

; q

00

); q

0

), and ((q; q

0

; q

00

); q

00

) for (q; q

0

; q

00

) 2 �. The coloring c is the identity

on V

0

(= Q) and maps a transition (q; q

0

; q

00

) 2 V

1

to q. The winning set consists

again of the state sequences which satisfy
. Since the game graph is �nite one

speaks of a �nite-state game. As in Remark 6.7 we obtain: Player 0 (Automaton)

has a winning strategy in �

A

from position q

0

i� the automaton A admits at least

one successful run.

Theorem 6.13 (Memoryless Determinacy of Rabin Chain Games)

Let G = (V

0

; V

1

; E; c; C) be a game graph and Win be a winning set speci�ed by a

Rabin chain condition, referring to the chain
 : E

1

� F

1

� : : : � E

n

� F

n

� C

(i.e., with � 2 Win i� 9k(In(�) \ E

k

= ; and In(�) \ F

k

6= ;)). Then from

any vertex of G either player 0 or player 1 has a memoryless winning strategy.

An application of this result to the games �

A;t

yields the Determinacy Theo-

rem 6.8 and thus the desired complementation of Rabin chain tree automata.

Before turning to the proof, we study the simple case that to win a play over

G (with vertex set V) it su�ces to reach a certain vertex just once. Given a

subset U � V and a player i, the attractor set Attr

i

(G;U) is the set of all vertices

from where player i can force a visit to some vertex of U in �nitely many steps.

51

(The suggestive terminology of \attractor sets" and \traps" as used below is due

to Zielonka [Zie95].) The following easy lemma shows how to form an attractor

set and how to build a memoryless strategy on it which enforces a visit to U ; we

state it for player 0 (the de�nition for player 1 is dual). The idea is to collect,

inductively for j = 0; 1; 2; : : : , the vertices from which player 0 can force a visit

to U in � j steps.

Lemma 6.14 (Attractor Lemma)

Let G be a game graph G with vertex set V = V

0

[V

1

and edge relation E, and

suppose U � V . De�ne a sequence (U

j

)

j�0

by U

0

= U and

U

j+1

= U

j

[fu 2 V

0

j 9v(E(u; v)^ v 2 U

j

)g [fu 2 V

1

j 8v(E(u; v)! v 2 U

j

)g

Then Attr

0

(G;U) =

S

j�0

U

j

. Moreover, a memoryless strategy for player 0 to

enforce a visit in U (just once) is obtained by choosing from any V

0

-vertex in

U

j+1

n U

j

an edge to a vertex in U

j

(which exists by construction). If G is �nite,

Attr

0

(G;U) is the �rst U

j

where U

j

= U

j+1

and hence computable (as is the

corresponding strategy to enforce a visit to U).

The �gure below illustrates the situation. Vertices in V

0

are indicated by

circles, vertices in V

1

by boxes. Arrows denote edges which have to be present,

dashed arrows denote edges which may be present.

trap for 0

Attr

0

(G,U)

U

It is clear that when player i is outside Attr

i

(G;U), he cannot force a tran-

sition into Attr

i

(G;U) (otherwise he would already be inside Attr

i

(G;U)). Thus

the complement Z of a set Attr

i

(G;U) is a trap for player i: From v 2 Z \ V

i

, all

edges go back to Z, while from v 2 Z \ V

1�i

at least one edge goes back to Z.

Hence in such a complement set Z each vertex has an outgoing edge back to Z,

and we have the following statement:

Remark 6.15 The complement of an attractor set within the game graph G

de�nes (by the induced subgraph) again a game graph; short: Complements of

attractor sets induce subgames.

52

Proof of the Determinacy Theorem 6.13. Let G = (V

0

; V

1

; E; c; C) be a game

graph and Win � C

!

be de�ned by the Rabin chain condition with the chain

 : E

1

� F

1

� : : : � E

n

� F

n

(� C). The claim is proved by induction on the

number of nonempty entries of
. If no such entry exists, player 1 wins trivially.

Assume E

1

6= ; (otherwise F

1

6= ;; then switch the role of the two players in the

remainder of the proof). Note that since E

1

is the smallest set of the chain
,

in�nitely many visits to E

1

-colored vertices (short: E

1

-vertices) cause a win of

player 1: there is no way to cause a win of player 0 by visiting more states!

Let W

0

be the set of vertices from where player 0 has a memoryless winning

strategy. The aim is to show that from each vertex in V n W

0

player 1 has a

memoryless winning strategy.

As a preparation, we merge the di�erent memoryless strategies as given from

the di�erent vertices in W

0

into a single memoryless strategy which applies uni-

formly to all vertices in W

0

.

Note that a memoryless strategy for player 0 is representable by a graph

(U;E

U

) where U � V , E

U

� E\(U�U), and E

U

has just one outgoing edge from

any vertex in U \ V

0

. Invoking a well-ordering on the set of those graphs (U;E

U

)

which constitute winning strategies for player 0, we may index the strategy graphs

by ordinal numbers. The desired uniform strategy is now de�ned on the union of

all domains U of these strategy graphs (forming the set W

0

), and for any vertex

x 2 W

0

\ V

0

the chosen out-edge is determined by the unique strategy graph

(U;E

U

) containing x which has the smallest ordinal index. If we follow this

choice of edges during a play, at any moment the index of the used strategy stays

equal or decreases. Since a proper decrease of ordinals is possible only a �nite

number of times, ultimately the relevant index stays constant and hence a �xed of

the given winning strategies will be applied, which guarantees that player 0 wins

when following the uniform strategy. (For readers who prefer an application of

the axiom of choice over the use of well-orderings, the argument starts by choosing

one strategy graph (U

v

; E

v

) for any v 2 W

0

. Since the vertex set is countable,

these graphs can be indexed by natural numbers, and the uniform strategy may

be de�ned, for a given x 2 W

0

\ V

0

, by the unique out-edge as determined by

that strategy graph (U

v

; E

v

) containing x which has minimal index.)

Referring to the uniform strategy on W

0

, we see that the complement V nW

0

is a trap for player 0 and de�nes a subgame, denoted GnW

0

for short. (Note that

by de�nition of W

0

we have Attr

0

(G;W

0

) = W

0

and hence Remark 6.15 applies.)

Let us assume that some vertices in V nW

0

are colored in the minimal set E

1

of the Rabin chain. (Otherwise the induction hypothesis gives the claim of the

Theorem easily.) We form the set

Y = Attr

1

(G nW

0

; (V nW

0

) \ E

1

)

collecting those vertices in the subgame G nW

0

from where player 1 can force a

visit to E

1

within this subgame.

53

E

1

Y

V

Z

W

0

Now the complement Z of Y within V nW

0

de�nes again a subgame, being

the complement of the attractor set Y . Z is disjoint from the E

1

-vertices, whence

the induction hypothesis can be applied to Z. Hence we obtain a partition of Z

into the vertices from which player 0, resp. player 1 wins over Z by memoryless

strategies. If there are indeed vertices from which player 0 wins in Z, player 0

would win from there also relative to the original game over V , contradicting

the fact that Z is disjoint from W

0

. Thus from each vertex in Z player 1 has a

memoryless strategy in the subgame over Z. These strategies can be merged into

one uniform strategy over Z, as above for W

0

.

This strategy for player 1 over Z is now lifted to yield a memoryless winning

strategy for player 1 from all vertices in V nW

0

: For vertices in the E

1

-attractor set

Y the memoryless (attractor) strategy to force a visit to an E

1

-vertex is applied.

When an E

1

-vertex within V nW

0

is reached, player 1 can be sure to continue

by an edge back to V n W

0

(recall that V n W

0

is a trap for player 0). Thus

there can be only two possibilities: Either player 1 is allowed to stay in Z from

some moment onwards; then the strategy supplied by the induction hypothesis

su�ces. Or Z is left in�nitely often within V nW

0

; then player 1 forces visits

of E

1

-vertices in�nitely often by the mentioned memoryless (attractor) strategy,

which again causes player 1 to win. 2

A determinacy result holds also for games where the winning set is de�ned

by a Muller (or Rabin or Streett) condition. In these cases, the winning strat-

egy of at least one player needs in general some memory (of uniformly bounded

�nite size), and the construction of strategies is more involved. References on

such strategy constructions are [GH82], further developed in [YY90], [Zei94], as

well as [Muc92] and [Kla94]. In [Kla94] essentially optimal complexity bounds

for complementation of (Streett-) tree automata are given. An approach using

alternating tree automata was developed by Muller and Schupp [MS90], [MS95].

Alternating automata are a generalization of nondeterministic automata in which

transitions are de�ned by \and-or"-expressions, instead of \or"-expressions as

present in nondeterministic automata. In the self-dual framework of alternat-

ing automata, complementation is easy, while projection is the nontrivial step.

Another natural self-dual calculus to show the complementation of Rabin tree

automata is developed by Arnold [Arn94b]; it involves operators for the de�ni-

tion of least and greatest �xed points over the powerset of f0; 1g

�

, the set of tree

54

nodes. De�nitions of winning strategies in �xed point calculi are presented in

[EJ91] and [Wal96]. Fixed point expressions allow very compact representations

of the desired vertex sets from where player 0, respectively player 1 wins, but

are (as yet) found di�cult to read by nonspecialists. Thus we used here a more

standard graph theoretic presentation in the style of [McN93], and owing a lot

to Zielonka's work [Zie95]. In the exposition above, the problem of introducing

memory is settled in advance (following [Th95]): the reduction of Muller tree

automata to Rabin chain tree automata of Theorem 6.5, which expands the state

space by \order-vectors" (or \later appearance records"), may be viewed as sup-

plying su�cient memory in the game graphs. Relative to these expanded game

graphs the simple construction of memoryless strategies su�ces.

If the game graph is �nite, the determinacy result can be sharpened by an ef-

fectiveness claim. This is the content of the \B�uchi-Landweber Theorem" [BL69],

again presented here for the case of the Rabin chain winning condition and mem-

oryless strategies (instead of the classical Muller condition and �nite-memory

strategies). The proof is simple in the presence of the Determinacy Theorem

6.13.

Theorem 6.16 (E�ective Determinacy of Finite-State Games, [BL69])

Let (G;Win) be a game where G is �nite and Win is given in Rabin chain form as

in the preceding Theorem. Then the sets U

0

, U

1

of vertices from which player 0,

respectively 1, wins by a memoryless strategy exhaust the vertex set of G and are

e�ectively computable, as well as corresponding memoryless winning strategies

(speci�ed by subsets of the edge set of G).

Proof. By Theorem 6.13, each vertex belongs to either U

0

or U

1

. We

verify that the property of a vertex v of G to belong to U

0

is in NP (and hence

of course decidable): Given G = (V

0

; V

1

; E; c; C) and a vertex v, one guesses a

subset of the edge set which de�nes a strategy for player 0 from vertex v (i.e., has

precisely one outgoing edge from any vertex in V

0

, keeps all outgoing edges from

vertices in V

1

, and contains an edge with source v), and then checks that in this

\strategy graph" player 1 cannot win. This means that player 1, starting from

v, cannot choose edges which allow him to reach (and repeatedly loop through)

a cycle that violates the winning condition Win. Clearly this can be tested in

polynomial time.

The test whether v 2 U

1

and the detection of corresponding winning strate-

gies is analogous, with players 0 and 1 exchanged. 2

By Theorem 6.13, the complement property of \v 2 U

0

" is \v 2 U

1

". Thus

membership in U

0

(as well as membership in U

1

) is a problem in NP \ co�NP. It

is open whether a polynomial-time algorithm exists. This question is equivalent

to the problem whether there is a polynomial-time model-checking algorithm for

the modal �-calculus ([EJS93], [Em96]).

55

It is possible to avoid the use of the Determinacy Theorem 6.13 and to con-

struct the sets U

0

and U

1

as well as the corresponding winning strategies directly.

This is the approach of the (rather di�cult) original proof of B�uchi and Landwe-

ber for �nite-state games with Muller winning condition ([BL69], see also [TB73]).

The use of the Rabin chain winning condition allows a simpler construction, by an

induction on the size of the game graphs (see [McN93, Sect. 6], [Th95]). Theorem

6.16 provides a solution to \Church's Problem" [Chu63], which asked for an au-

tomatic synthesis of reactive �nite-state programs from automaton speci�cations

(or from MSO-speci�cations, invoking their translation into automata).

An easy application of Theorem 6.16 shows that the emptiness problem of

automata over in�nite trees is decidable (here with the Rabin chain acceptance

condition). As a preparation, we introduce the notion of a \regular tree" over an

alphabet A.

De�nition 6.17 A tree t 2 T

!

A

is called regular if it is \�nitely generated",

i.e. generated by a deterministic �nite automaton B = (Q

B

; f0; 1g; q

0B

; �

B

; f

B

)

equipped with an output function f

B

: Q

B

! A. The label t(w) of the tree t at

node w 2 f0; 1g

�

is f

B

(�

B

(q

0B

; w)), the output of B after reading input w.

There is an equivalent de�nition in terms of input-free deterministic tree au-

tomata (without acceptance condition). The idea is to capture the inputs 0; 1 of

B (\directions") by the two branchings which are given within tree automaton

transitions. From a �nite word automaton B as above, derive a deterministic

tree automaton C = (Q

B

� A; (q

0B

; a

0

);�), setting a

0

= f

B

(�

B

(q

0

; �)) and al-

lowing a transition ((q

1

; a

1

); (q

2

; a

2

); (q

3

; a

3

)) in � i� f

B

(q

i

) = a

i

for i = 1; 2; 3,

�

B

(q

1

; 0) = q

2

, and �

B

(q

1

; 1) = q

3

. Clearly the unique run of C generates (in its A-

component) the tree which is generated by the word automaton B. Conversely,

an input-free tree automaton as above induces canonically a word automaton

which generates the same (regular) tree.

Theorem 6.18 (Rabin Basis Theorem, cf. [Rab72])

For Rabin chain tree automata A, the emptiness problem \ T

!

(A) = ;?" is de-

cidable, and any nonempty set T

!

(A) contains a regular tree (whose generating

automaton B is obtained e�ectively from A).

Proof. Given a Rabin chain tree automaton A = (Q;A; q

0

;�;
), proceed

to the \input-guessing" (and input-free) tree automaton A

0

= (Q � A; fq

0

g �

A;�

0

;

0

), which nondeterministically generates an input tree t (by its several

initial states and its transitions) and on t works like A (by an appropriate de�-

nition of �

0

and

0

). Then: T

!

(A) 6= ; i� A

0

has some successful run.

We consider the �nite-state game �

A

0

associated to A

0

as in Example 6.12. By

the game theoretical formulation of acceptance, A

0

has some successful run i� in

�

A

0

the player Automaton wins from some initial position (q

0

; a). Whether this

56

holds can be checked e�ectively by Theorem 6.16, which yields the decidability

claim.

Now assume T

!

(A) 6= ;, i.e., that A

0

admits a successful run. So in �

A

0

the

player Automaton wins from some initial position (q

0

; a), and by Theorem 6.16 he

does so by means of a memoryless strategy. This strategy induces a deterministic

tree automaton as \subautomaton" of A

0

, where for each state (q; a) (as game

position for Automaton) only one transition exists (as move of Automaton) for

continuation of a run. By the remark above, such a deterministic tree automaton

generates a regular tree. By construction of A

0

, this regular tree belongs to the

tree language recognized by A. 2

In Theorem 6.18 we applied the e�ective determinacy result 6.16. Rabin used

a converse approach in [Rab72]; he gave a direct proof of the Basis Theorem

(for tree automata with Rabin acceptance condition) and used the existence of

regular trees to show that �nite-state winning strategies exist in games over �nite

graphs (see e.g. [Th90]).

In [EJ88] (see also [Em96]) it is proved that the non-emptiness problem for

Rabin tree automata with m states and n accepting pairs is solvable in time

O((mn)

3n

). Furthermore, a polynomial-time reduction of the propositional sat-

is�ability problem 3-SAT to the non-emptiness problem of Rabin tree automata

shows the latter to be NP-complete.

6.3 Applications to Decision Problems of MSO-Logic

The complementation theorem for tree automata is the central step in connecting

MSO-formulas and tree automata.

We consider monadic second-order formulas interpreted in the structure

T = (f0; 1g

�

; S

T

0

; S

T

1

) of the binary tree, where S

T

i

is the i-th successor rela-

tion (i.e., S

T

i

(u; v) holds i� ui = v). The set of sentences (in the corresponding

language with the two successor relation symbols S

0

, S

1

) which are true in T

form the theory S2S (\second-order theory of two successors"). Monadic second-

order formulas '(X

1

; : : : ;X

n

) with free set variables X

1

; : : :X

n

are interpreted

in expanded structures t = (T; P

1

; : : : ; P

n

). As explained in Section 2.1, such a

tree structure t is identi�ed with the corresponding in�nite tree t 2 T

!

f0;1g

n

; for

each node w 2 f0; 1g

�

we have t(w) = (c

1

; : : : ; c

n

) where c

i

= 1 i� w 2 P

i

.

The equivalence between MSO-logic and tree automata rests on the following

statement:

Theorem 6.19 For any formula '(X

1

; : : : ;X

n

) of the monadic second-order

language in the signature with S

0

; S

1

, one can construct e�ectively a Muller tree

automaton A such that A accepts a tree t i� t satis�es '.

Proof. Follow the pattern of Theorem 2.1 and consider the modi�ed but

equivalent logic MSO

0

in which �rst-order quanti�ers are simulated by second-

57

order quanti�ers over singletons. By induction on formulas of this logic one

constructs corresponding tree automata. The case of atomic formulas is easy, as

are the induction steps concerning _ and 9 (using nondeterminism). The com-

plementation step is clear from Theorem 6.9. 2

By formalizing the Muller (or Rabin or Streett) acceptance condition of tree

automata in MSO-logic, tree automata (and hence MSO-formulas) are converted

into equivalent �

1

2

-formulas: A sequence of existential set quanti�ers expresses

the existence of a run, whereas the condition that the run is successful requires

a universal quanti�er over paths (i.e., a universal set quanti�er) followed by a

�rst-order formula.

More re�ned results of tree language de�nability are obtained when restricted

MSO-formulas are considered. For example, if only weak second-order quanti-

�ers are admitted (ranging over �nite sets of tree nodes), a proper subclass of

the MSO-de�nable tree languages (the class of weakly de�nable tree languages) is

obtained. As shown by Rabin [Rab70], these tree languages are the sets L such

that both L and the complement of L are recognizable by B�uchi tree automata.

The classi�cation of weak second-order formulas according to quanti�er alterna-

tion of the prenex normal form yields an in�nite hierarchy ([Th82b]). Another

hierarchy is built up by classifying the Rabin recognizable tree languages accord-

ing to the number of disjunction members in the Rabin acceptance condition.

Niwi�nski [Niw88] proved that this hierarchy is in�nite, sharpening considerably

the separation of B�uchi and Rabin recognizability as explained above in Exam-

ple 6.3. For a more detailed synopsis of the classi�cation of Rabin recognizable

tree languages and for further references we refer the reader to the concluding

section of [TL94]. The connections to �xed point logics constitute an own fasci-

nating chapter of de�nability theory and are developed by Arnold and Niwi�nski

in [AN92], [Niw96].

Let us turn to decidability results for monadic second-order theories. An

application of Theorem 6.19 to an MSO-sentence ' yields an input-free tree

automaton which admits a successful run i� ' is true in the tree structure T .

The existence of such a successful run is decided e�ectively by Theorem 6.18.

Hence we obtain the celebrated

Theorem 6.20 (Rabin Tree Theorem [Rab69]) The theory S2S is decidable.

Many mathematical theories have been shown to be decidable by an inter-

pretation in S2S; some examples are presented in [Rab69]. In particular, the

decidability S2S extends to tree models with arbitrary �nite and even countable

branching (such trees are easily embedded in the binary tree T).

Another type of application is the decidability of modal logics or program

logics, if their models are propositional Kripke structures, i.e. at most countable

directed graphs whose vertices are propositional models. Since any propositional

58

model over say n propositional variables is coded by a vector from f0; 1g

n

(giving

a truth value assignment), such a Kripke structure induces (by unravelling) a

f0; 1g

n

-valued tree t. An embedding of this tree into the binary tree is possible,

preserving the pre�x relation between tree nodes. (If we reach a t-node v from

the root by taking the root's i

1

-th successor, from there the i

2

-th successor, etc.,

until reaching v as an i

l

-th successor, we code v by the node 1

i

1

01

i

2

0 : : : 1

i

l

0 of

the binary tree.) Such an embedding is described by its range, a set P

0

� f0; 1g

�

.

Then a Kripke structure over n propositional variables is coded by a binary tree

model (T; P

0

; P

1

; : : : ; P

n

) with P

1

; : : : ; P

n

� P

0

. Assume now that any formula

' in n propositional variables of a given modal logic L can be translated into an

S2S-formula '(X

0

;X

1

; : : : ;X

n

), such that a Kripke structure satis�es ' i� the

corresponding tree model (T; P

0

; P

1

; : : : ; P

n

) satis�es '. Then satis�ability of L-

formulas is reducible to the question whether 9X

0

9X

1

: : :9X

n

'(X

0

;X

1

; : : : ;X

n

)

holds in T , which in turn is decidable by Rabin's Tree Theorem. Many modal

and temporal logics have been proved decidable along this line; examples are the

modal �-calculus and the computation tree logic CTL

�

(see e.g. [Th90] or [EJ88]

for a more detailed explanation and further references, and [JW95] for a recent

automata theoretic study of the modal �-calculus). Moreover, if a formula of such

a logic is satis�able, i.e. if a binary tree model (T ; P

0

; P

1

; : : : ; P

n

) exists for a

corresponding MSO-formula, then, by Rabin's Basis Theorem 6.18, also a regular

tree model can be guaranteed. Such regular models originate from �nite graphs

(the generating automata). So the respective modal logic L has the so-called

�nite model property. Tree automata can also be applied to obtain a solution

of the model checking problem for branching-time logics (where satisfaction in

a given model is to be tested rather than satis�ability); see [KG96] for a recent

study.

The process of unravelling is also the basis of an interesting general-

ization of Rabin's Tree Theorem. Consider any relational structure M =

(M;P

1

; : : : P

m

; R

1

; : : : ; R

n

) where the P

i

are subsets of M and the R

i

are bi-

nary relations over M . (The restriction to unary and binary relations is not

essential but assumed for notational convenience.) The tree structure over M is

the structure

M

#

= (M

+

; S

M

; P

+

1

; : : : P

+

m

; R

+

1

; : : : ; R

+

n

);

where M

+

is the set of nonempty sequences over M and for x; y 2M

+

� S

M

(x; y) i� x

^

m = y for some m 2M ,

� P

+

i

(x) i� there are z 2 M

�

;m 2M with x = z

^

m and P

i

(m),

� R

+

i

(x; y) i� there are z 2 M

�

;m;m

0

2 M such that x = z

^

m, y = z

^

m

0

,

R

i

(m;m

0

).

In unpublished work of Stupp [Stu75], it was shown that the decidability of

the monadic second-order theory of a given structure M can be transferred to

59

M

#

. Rabin's Tree Theorem amounts to the case where M is the two element

structure (f0; 1g; P

0

; P

1

) where P

0

= f0g and P

1

= f1g (which clearly has a

decidable monadic second-order theory).

For the unravelling of a structureM, e.g. for the step from a state transition

graph to the tree of execution sequences, the above construction does not provide

enough information connecting successive tree levels: Here, for a binary relation

R � M �M we would need a relation R

0

� M

+

�M

+

which contains all pairs

(z

^

m; z

^

m

^

m

0

) with R(m;m

0

). Given R

+

as above, this relation R

0

is de�nable

in the presence of an additional unary predicate, the clone predicate, de�ned by

C

M

= fx

^

m

^

m j x 2M

+

;m 2Mg:

Now let the unravelling of M be the structure

M

+

= (M

+

; S

M

; C

M

; P

+

1

; : : : P

+

m

; R

+

1

; : : : ; R

+

n

):

A related notion of unravelling (giving computation trees of deterministic tran-

sition systems) is developed in [Cou95]. In unpublished work of Muchnik (see

[Sem84]), in [Cou95] and (for the general form) in [Wal96] it is shown how to

translate a sentence ' of the monadic second-order language of M

+

into a sen-

tence ' of the language of the original structureM such thatM

+

j= ' i�M j= '.

This yields the following powerful transfer theorem for decidability of theories:

Theorem 6.21 (Muchnik, cf. [Wal96]) If the monadic second-order theory of

M is decidable, so is the monadic second-order theory of M

+

.

A di�erent kind of generalization of the Rabin Tree Theorem is concerned with

the monadic second-order theory of in�nite graphs which are \regular modi�ca-

tions of trees". A �rst result in this direction was proved by Muller and Schupp

[MS85]; they showed that the monadic second-order theory of any context-free

graph is decidable. These graphs are obtained as transition graphs of pushdown

automata (where a vertex is a word qv 2 Q � P

�

, for a state set Q and a push-

down alphabet P). The binary tree arises as a special case, using the pushdown

automaton with a single state q

0

and transitions allowing to add 0 and 1 to the

top of any pushdown store content, say with q

0

0 as initial con�guration.

More general classes of graphs with a decidable monadic second-order theory

were obtained by Courcelle [Cou95] and Caucal [Cau96]. We discuss here the

graphs considered by Caucal, which are speci�ed by a concrete language theoret-

ical description. Vertices are represented by words over an alphabet A and edges

are labelled by letters of an alphabet B; thus a graph is given by its edge set, as

a subset of A

�

�B�A

�

. The mentioned graphs are formed in three stages, using

the notions of a \recognizable graph", \right closure" of a graph, and \rational

restriction" of a graph:

60

De�nition 6.22 A graph G, presented as a set of triples (u; b; v) 2 A

�

�B�A

�

,

is called recognizable if it is a �nite union of sets U � fbg � V with regular

U; V � A

�

. Its right closure, written G:A

�

, is obtained from G by including

any edge (uw; b; vw) if (u; b; v) belongs to G. A rational restriction of a graph

H with vertices in A

�

via the regular language W � A

�

is obtained from H by

keeping only the vertices in W and forming the induced subgraph of H. Now let

the class R contain all graphs which are rational restrictions of right closures of

recognizable graphs.

Example 6.23 Any transition graph of a pushdown automaton A belongs to

R: Choose the alphabet A to be the union of the state set Q and the pushdown

alphabet P of A, and let B be the terminal alphabet of A. The �nite transition

table of A determines a �nite (and hence recognizable) graph G

0

with edge set

contained in Q�P�B�Q�P

�

; now the transition graph G ofA is the right closure

of G

0

restricted to all vertices in Q � P

�

which are reachable from a designated

initial con�guration q

0

v

0

. The rules generating these vertices from q

0

v

0

have the

form qaw! q

0

uw with q; q

0

2 Q, a 2 P , and u;w 2 P

�

; thus they form a pre�x

rewriting system (or regular canonical system in the sense of B�uchi [B�u64]) and

are known to generate a regular language. This shows that G belongs to R.

It can be shown that the graphs in R are obtained from the full binary tree

by two operations, \inverse rational substitution" and an abstract version of

\rational restriction" (in a certain analogy to the generation of the context-free

languages from the Dyck languages by inverse morphisms and intersection with

regular sets). Both operations preserve the decidability of the monadic second-

order theory. Thus, by Rabin's Tree Theorem, the following holds:

Theorem 6.24 [Cau96] Each graph in the class R, i.e. each rational restriction

of the right closure of a recognizable graph, has a decidable monadic second-order

theory.

It is possible to include also nonregular features in graphs and still keep the

decidability of the monadic theory. For example, as shown by Elgot and Rabin

[ER66], there are nonregular sets P of natural numbers, e.g. the set of squares,

the set of powers of 2 or the set of factorial numbers, such that the structure

(!; S; P) of the natural numbers with successor and expanded by P has a de-

cidable monadic second-order theory. Nevertheless, slight generalizations of the

operations leading to Theorem 6.24 produce graphs with an undecidable monadic

second-order theory, for example the in�nite grid (with edges (a

i

b

j

; a; a

i+1

b

j

) and

(a

i

b

j

; b; a

i

b

j+1

) for i; j � 0). So, it seems that Theorems 6.21 and 6.24 exhaust

rather well the class of in�nite graphs whose monadic second-order theory is

decidable.

61

Acknowledgment

I thank the colleagues and friends of the ESPRIT Working Group ASMICS, who

contributed to this work by many helpful questions and remarks.

Special thanks are due to D. Caucal, D. Niwi�nski, I. Walukiewicz, and

W. Zielonka for sending me their as yet unpublished papers and useful hints.

Constructive comments by A. Arnold, D. Caucal, B. Courcelle, N. Klarlund,

I. Walukiewicz, and W. Zielonka on a pre-�nal version contributed a lot to im-

prove the text. Finally, I thank the members of the theory group in Kiel for

e�cient help and support, and G. Rozenberg for his encouragement to write and

�nish this paper.

References

[AD94] R. Alur, D. Dill, A theory of timed automata, Theor. Comput. Sci. 126

(1994), 183-235.

[AH93] R. Alur, T.A. Henzinger, Real-time logics: complexity and expressive-

ness, Information and Computation 104 (1993), 35-77.

[AHU74] A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of

Computer Algorithms, Addison-Wesley, Reading, Mass. 1974.

[AN92] A. Arnold, D. Niwi�nski, Fixed point characterization of weak monadic

logic de�nable sets of trees, in: Tree Automata and Languages (M. Nivat, A.

Podelski, Eds.), Elsevier Science Publishers, Amsterdam 1992, pp. 159-188.

[Arn94a] A. Arnold, Finite Transition Systems, Masson, Paris, and Prentice-Hall,

Hemel Hempstead 1994.

[Arn94b] A. Arnold, An initial semantics of the �-calculus on trees and Rabin's

complementation theorem, Theor. Comput. Sci. 148 (1994), 121-132.

[BCST88] D.A.M. Barrington, K.J. Compton, H. Straubing, D. Th�erien, Regular

languages in NC

1

, J. Comput. System Sci. 38 (1988), 478-499.

[BHMV94] V. Bruy�ere, G. Hansel, C. Michaux, R. Villemaire, Logic and p-

recognizable sets of integers, Bull. Belg. Math. Soc. Simon Stevin 1 (1994),

191-238.

[BK95] D. Basin, N. Klarlund, Hardware veri�cation using monadic second-order

logic, in: Computer Aided Veri�cation (P. Wolper, Ed.), Lecture Notes in

Computer Science 939, Springer-Verlag, Berlin 1995, pp. 31-41.

[BL69] J.R. B�uchi, L.H. Landweber, Solving sequential conditions by �nite-state

strategies, Trans. Amer. Math. Soc. 138 (1969), 295-311.

62

[BN95] D. Beauquier, D. Niwi�nski, Automata on in�nite trees with counting

constraints, Information and Computation 120 (1995), 117-125.

[BP89] D. Beauquier and J.-E. Pin, Factors of words, in: Automata, Languages,

and Programming, Proc. 16th ICALP (G. Ausiello et al., Eds.), Lecture

Notes in Computer Science 372, Springer-Verlag, Berlin 1989, pp. 63-79.

[BS95] F. Blanchet-Sadri, Some logical characterizations of the dot-depth hier-

archy and applications, J. Comput. System Sci. 51 (1995), 324-337.

[B�u60] J.R. B�uchi, Weak second-order arithmetic and �nite automata, Z. Math.

Logik Grundl. Math. 6 (1960), 66-92.

[B�u62] J.R. B�uchi, On a decision method in restricted second-order arithmetic,

in: Proc. 1960 Int. Congr. for Logic, Methodology and Philosophy of Science,

Stanford Univ. Press, Stanford, 1962, pp. 1-11.

[B�u64] J.R. B�uchi, Regular canonical systems, Arch. Math. Logik Grundlagen-

forschung 6 (1964), 91-111.

[B�u77] J.R. B�uchi, Using determinacy to eliminate quanti�ers, in: Fundamentals

of Computation Theory (M. Karpinski, Ed.), Lecture Notes in Computer

Science 56, Springer-Verlag, Berlin 1977, pp. 367-378.

[B�u83] J.R. B�uchi, State-strategies for games in F

��

\ G

��

, J. Symb. Logic 48

(1983), 1171-1198.

[Car94] O. Carton, Chain automata, in: Technology and Applications, Informa-

tion Processing '94, Vol. I (B. Pherson, I. Simon, Eds.), IFIP, North-Holland,

Amsterdam 1994, pp. 451-458.

[Cau96] D. Caucal, On in�nite transition graphs having a decidable monadic

theory, in: Automata, Languages, and Programming, Proc. ICALP'96, (F.

Meyer auf der Heide, B. Monien, Eds.), Lecture Notes in Computer Science,

Springer-Verlag, Berlin 1996 (to appear).

[Chu63] A. Church, Logic, arithmetic, and automata, Proc. Intern. Congr. Math.

1962, Almqvist and Wiksells, Uppsala 1963, pp. 21-35.

[CG95] C. Cho�rut, L. Guerra, Logical de�nability of some rational trace lan-

guages, Math. Syst. Theory 28 (1995), 397-420.

[CGL94] E. Clarke, O. Grumberg, D. Long, Veri�cation tools for �nite-state

concurrent systems, in: A Decade of Concurrency (J.W. de Bakker et al.,

Eds.), Lecture Notes in Computer Science 803, Springer-Verlag, Berlin 1994,

pp. 124-175.

63

[CPP93] J. Cohen, D. Perrin and J.E. Pin, On the expressive power of temporal

logic, J. Comput. System Sci. 46 (1993), 271-294.

[Cou90] B. Courcelle, The monadic second-order logic of graphs I: recognizable

sets of �nite graphs Inform. and Comput. 85 (1990), 12-75.

[Cou91] B. Courcelle, The monadic second-order theory of graphs V: on closing

the gap between de�nability and recognizability, Theor. Comput. Sci. 80

(1991), 153-202.

[Cou94] B. Courcelle, Monadic second-order de�nable graph transductions: a

survey, Theor. Comput. Sci. 126 (1994), 53-75.

[Cou95] B. Courcelle, The monadic second-order theory of graphs IX: Machines

and their behaviours, Theor. Comput. Sci. 151 (1995), 125-162.

[Cou96] B. Courcelle, The expression of graph properties and graph transforma-

tions in monadic second-order logic, in: Handbook of Graph Transformations,

Vol. I: Foundations (G. Rozenberg, Ed.), World Scienti�c, Singapore 1996.

[DM96] V. Diekert, Y. M�etivier, Partial commutation and traces, in: Handbook

of Formal Language Theory, Vol. III (G. Rozenberg, A. Salomaa, Eds.),

Springer-Verlag, New York (to appear).

[Don70] J. Doner, Tree acceptors and some of their applications, J. Comput.

System Sci. 4 (1970), 406-451.

[DR95] V. Diekert, G. Rozenberg (Eds.), The Book of Traces, World Scienti�c,

Singapore 1995.

[DT90] M. Dauchet, S. Tison, The theory of ground rewrite systems is decidable,

Proc. 5th IEEE Symp. on Logic in Computer Science, 1990, pp. 242-248.

[EF95] H.D. Ebbinghaus, J. Flum, Finite Model Theory, Springer-Verlag, New

York 1995.

[EFT94] H.D. Ebbinghaus, J. Flum, W. Thomas, Mathematical Logic (2nd Ed.),

Springer-Verlag, New York 1994.

[EH93] J. Engelfriet, H.J. Hoogeboom, X-automata on !-words, Theor. Comput.

Sci. 110 (1993), 1-51.

[EJ88] E.A. Emerson, C.S. Jutla, The complexity of tree automata and logics of

programs, in: Proc. 29th IEEE Symp. on Foundations of Computer Science,

1988, pp. 328-337.

64

[EJ91] E.A. Emerson, C.S. Jutla, Tree automata, Mu-calculus and determinacy,

in: Proc. 32nd IEEE Symp. on Foundations of Computer Science (1991),

368-377.

[EJS93] E.A. Emerson, C.S. Jutla, A.P. Sistla, On model checking for fragments

of �-calculus, in: Computer Aided Veri�cation (C. Courcoubetis, Ed.), Lec-

ture Notes in Computer Science 697, Springer-Verlag, Berlin 1993, pp. 385-

396.

[Elg61] C.C. Elgot, Decision problems of �nite automata design and related arith-

metics, Trans. Amer. Math. Soc. 98, (1961), 21-52.

[Em90] E.A. Emerson, Temporal and modal logic, in: Handbook of Theoretical

Computer Science, Vol. B (J. v. Leeuwen, Ed.), Elsevier Science Publishers,

Amsterdam 1990, pp. 995-1072.

[Em96] E.A. Emerson, Automated temporal reasoning about reactive systems,

in: Logics for Concurrency: Structure versus Automata (F. Moller, G.

Birtwistle, Eds.), Lecture Notes in Computer Science 1043, Springer-Verlag,

Berlin 1996, pp. 41-101.

[EM96] W. Ebinger, A. Muscholl, Logical de�nability on in�nite traces, Theor.

Comput. Sci. 154 (1996), 67-84.

[ER66] C.C. Elgot, M.O. Rabin, Decidability and unde�nability of second (�rst)

order theory of (generalized) successor, J. Symbolic Logic 31 (1966), 169-181.

[ER93] A. Ehrenfeucht, G. Rozenberg, T-structures, T-functions, and texts,

Theor. Comput. Sci. 116 (1993), 227-290.

[EW96] K. Etessami, Th. Wilke, An Until hierarchy for temporal logic, in: Proc.

11th IEEE Symp. on Logic in Computer Science, 1996 (to appear).

[Fag74] R. Fagin, Generalized �rst-order spectra and polynomial-time recogniz-

able sets, in: Complexity of Computation (R.M. Karp, Ed.), SIAM-AMS

Proceedings 7 (1974), pp. 43-73.

[FS93] C. Frougny, J. Sakarovitch, Synchronized rational relations of �nite and

in�nite words, Theor. Comput. Sci. 108 (1993), 45-82.

[FSV95] R. Fagin, L.J. Stockmeyer, MY. Vardi, On monadic NP vs monadic

co-NP, Information and Computation 120 (1995), 78-92.

[GHR94] D. Gabbay, I. Hodkinson, M. Reynolds, Temporal Logic, Vol. 1, Claren-

don Press, Oxford 1994.

65

[GH82] Y. Gurevich, L. Harrington, Trees, automata, and games, in: Proc. 14th

ACM Symp. on the Theory of Computing, 1982, pp. 60-65.

[GR96] D. Giammarresi, A. Restivo, Two-dimensional languages, in: Handbook

of Formal Language Theory, Vol. III (G. Rozenberg, A. Salomaa, Eds.),

Springer-Verlag, New York (to appear).

[GRST96] D. Giammarresi, A. Restivo, S. Seibert, W. Thomas, Monadic second-

order logic over rectangular pictures and recognizability by tiling systems,

Information and Computation 125 (1996), 32-45.

[GS84] F. G�ecseg, M. Steinby, Tree Automata, Akad�emiai Kiod�o, Budapest 1984.

[Hnf65] W. Hanf, Model-theoretic methods in the study of elementary logic, in:

The Theory of Models (J. Addison, L. Henkin, P. Suppes, Eds.), North-

Holland, Amsterdam 1965, pp. 132-145.

[HP94] H.J. Hoogeboom, P. ten Pas, MSO-de�nable text languages, in: Math-

ematical Foundations of Computer Science 1994 (I. Pr

�

ivara et al., Eds.),

Lecture Notes in Computer Science 841, Springer-Verlag, Berlin 1994, pp.

413-422.

[HR86] H.J. Hoogeboom, G. Rozenberg, In�nitary languages: basic theory and

applications to concurrent systems, in: Current Trends in Concurrency (J.

de Bakker et al., Eds.), Lecture Notes in Computer Science 224 , Springer-

Verlag, Berlin 1986, pp. 266-342.

[Imm87] N. Immerman, Languages that capture complexity classes, SIAM J.

Comput. 16 (1987), 761-778.

[JW95] D. Janin, I. Walukiewicz, Automata for the modal �-calculus and related

results, in: Math. Found. of Comput. Sci. 1995 (J. Wiedermann, P. H�ajek,

Eds.), Lecture Notes in Computer Science 969, Springer-Verlag, Berlin 1995,

pp. 552-562.

[Kam68] J.A. Kamp, Tense logic and the theory of linear order, Ph. D. Thesis,

Univ. of California, Los Angeles, 1968.

[KG96] O. Kupferman, O. Grumberg, Branching-time temporal logic and tree

automata, Information and Computation 125 (1996), 62-69.

[Kla94] N. Klarlund, Progress measures, immediate determinacy, and a subset

construction for tree automata, Ann. Pure Appl. Logic 69 (1994), 243-168.

[KMS95] N. Klarlund, M. Mukund, M. Sohoni, Determinizing B�uchi asyn-

chronous automata, in: Foundations of Software Technology and Theoret-

ical Computer Science (P.S. Thiagarajan , Ed.), Lecture Notes in Computer

Science 1026, Springer-Verlag, Berlin 1995, pp. 456-470.

66

[KPB95] S.C. Krishnan, A. Puri, R.K. Brayton, Structural complexity of !-

automata, in: STACS'95 (E.W. Mayr, C. Puech, Eds.), Lecture Notes in

Computer Science 900, Springer-Verlag 1995, pp. 143-156.

[KS81] T. Kamimura, G. Slutzki, Parallel and two-way automata on directed

ordered acyclic graphs, Inform. Contr. 49 (1981), 10-51.

[Kur94] R.P. Kurshan, Computer-Aided Veri�cation of Coordinating Processes,

Princeton University Press, Princeton, N.J. 1994.

[Lad77] R. Ladner, Application of model theoretic games to discrete linear orders

and �nite automata, Information and Control 33 (1977), 281-303.

[Lan69] L.H. Landweber, Decision problems for !-automata,Math. Systems The-

ory 3 (1969), 376-384.

[LPZ85] O. Lichtenstein, A. Pnueli, L. Zuck, The glory of the past, in: Logics of

Programs (R. Parikh et al., Eds.), Lecture Notes in Computer Science 193,

Springer-Verlag, Berlin 1985, pp. 196-218.

[LST95] C. Lautemann, Th. Schwentick, D. Th�erien, Logics for context-free lan-

guages, in: Computer Science Logic (L. Pacholski, J. Tiuryn, Eds.), Lecture

Notes in Computer Science 933, Springer-Verlag, Berlin 1995, pp. 205-216.

[McM93] K. McMillan, Symbolic Model Checking, Kluwer, Dordrecht 1993.

[McN66] R. McNaughton, Testing and generating in�nite sequences by a �nite

automaton, Inform. Contr. 9 (1966), 521-530.

[McN93] R. McNaughton, In�nite games played on �nite graphs, Ann. Pure Appl.

Logic 65 (1993), 149-184.

[McNP71] R. McNaughton and S. Papert, Counter-Free Automata, MIT Press,

Cambridge, Mass. 1971.

[Mic88] M. Michel, Complementation is more di�cult with automata on in�nite

words, manuscript, CNET, Paris, 1988.

[Mil90] R. Milner, Operational and algebraic semantics of concurrent processes,

in: Handbook of Theoretical Computer Science (J. v. Leeuwen, Ed.), Elsevier

Science Publ., Amsterdam 1990, pp. 1201-1242.

[Mos80] Y. N. Moschovakis, Descriptive Set Theory, North-Holland, Amsterdam

1980.

[MP92] Z. Manna, A. Pnueli, The Temporal Logic of Reactive and Concurrent

Programs, Springer-Verlag, Berlin, Heidelberg, New York 1992.

67

[MS85] D.E. Muller, P.E. Schupp, The theory of ends, pushdown automata, and

second-order logic, Theor. Comput. Sci. 37 (1985), 51-75.

[MS90] D.E. Muller, P.E. Schupp, Alternating automata on in�nite trees,

Theor.Comput. Sci. 54 (1987), 267-276.

[MS95] D.E. Muller, P.E. Schupp, Simulating alternating tree automata by non-

deterministic automata: new results and new proofs of the theorems of Ra-

bin, McNaughton and Safra, Theor. Comput. Sci. 141 (1995), 69-107.

[Mst84] A.W. Mostowski, Regular expressions for in�nite trees and a standard

form of automata, in: A. Skowron (ed.), Computation Theory, Lecture Notes

in Computer Science 208, Springer-Verlag, Berlin 1984, pp. 157-168.

[Mst91a] A.W. Mostowski, Games with forbidden positions, Preprint No. 78,

Uniwersytet Gda�nski, Instytyt Matematyki, 1991.

[Mst91b] A.W. Mostowski, Hierarchies of weak automata and weak monadic for-

mulas, Theor. Comput. Sci. 83 (1991), 323-335.

[Muc92] A. Muchnik, Games on in�nite trees and automata with dead-ends. A

new proof for the decidability of the monadic second-order theory of two suc-

cessors, Bull. of the EATCS 48 (1992), 220-267 (Russian version in Semiotics

and Information 24 (1984)).

[Mul63] D.E. Muller, In�nite sequences and �nite machines, in: Proc. 4th IEEE

Symp. on Switching Circuit Theory and Logical Design, 1963, pp. 3-16.

[MV96] C. Michaux, R. Villemaire, Presburger arithmetic and recognizability

of natural numbers by automata: new proofs of Cobham's and Semenov's

theorems, Ann. Pure Appl. Logic 77 (1996), 251-277.

[Niw88] D. Niwi�nski, Fixed points vs. in�nite generation, in: Proc. 3rd IEEE

Symp. on Logic in Computer Science, 1988, pp. 402-409.

[Niw96] D. Niwi�nski, Fixed points characterization of in�nite behaviour of �nite

state systems, Theor. Comput. Sci. (to appear).

[Per90] D. Perrin, Finite Automata, in: Handbook of Theoretical Computer Sci-

ence, Vol. B (J. van Leuwen, ed.), Elsevier Science Publishers, Amsterdam

1990, pp. 1-57.

[Pin86] J.-E. Pin, Varieties of Formal Languages, Plenum, New-York, 1986.

[PP86] D. Perrin and J.-E. Pin, First-order logic and star-free sets, J. Comput.

System Sci. 32 (1986), 393-406.

68

[Pot95] A. Pottho�, First-order logic on �nite trees, in: TAPSOFT '95

(P.D. Mosses et al., Eds.), Lecture Notes in Computer Science, Springer

Verlag, Berlin 1995, pp. 125-139.

[PST94] A. Pottho�, S. Seibert, W. Thomas, Nondeterminism versus determin-

ism of �nite automata over directed acyclic graphs, Bull. Belg. Math. Soc.

Simon Stevin 1 (1994), 285-298.

[PT93] A. Pottho�, W. Thomas, Regular tree languages without unary symbols

are star-free, in: Fundamentals of of Computation Theory (Z. Esik, Ed.),

Lecture Notes in Computer Science 710, Springer-Verlag, Berlin 1993, pp.

396-405.

[Rab69] M.O. Rabin, Decidability of second-order theories and automata on in-

�nite trees, Trans. Amer. Math. Soc. 141 (1969), 1-35.

[Rab70] M.O. Rabin, Weakly de�nable relations and special automata, in: Math-

ematical Logic and Foundations of Set Theory (Y. Bar-Hillel, ed.), North-

Holland, Amsterdam 1970, pp. 1-23.

[Rab72] M.O. Rabin, Automata on in�nite objects and Church's Problem, Amer.

Math. Soc., Providence, RI, 1972.

[Saf88] S. Safra, On the complexity of !-automata, in: Proc. 29th IEEE Symp.

on Foundations of Computer Science, 1988, pp. 319-327.

[Saf92] S. Safra, Exponential determinization for !-automata with strong-

fairness acceptance condition, in: Proc. 24th ACM Symp. on the Theory

of Computing, 1992, pp. 275-282.

[SC85] A.P. Sistla, E.M. Clarke, The complexity of propositional linear time

logics, J. Assoc. Comput. Mach. 32 (1985), 733-749.

[Sch65] M.P. Sch�utzenberger, On �nite monoids having only trivial subgroups,

Information and Control 8 (1965), 190-194.

[See92] D. Seese, Interpretability and tree automata: a simple way to solve algo-

rithmic problems on graphs closely related to trees, in: Tree Automata and

Languages (M. Nivat, A. Podelski, Eds.), Elsevier Science Publishers, 1992,

pp. 83-114.

[See96] D. Seese, Linear time computable problems and �rst-order descriptions,

Math. Struct. in Comp. Sci. 1996.

[Sei92] S. Seibert, Quanti�er hierarchies over word relations, in: Computer Sci-

ence Logic (E. B�orger et al. Eds.), Lecture Notes in Computer Science 626,

Springer-Verlag, Berlin 1992, 329-338.

69

[Sem84] A.L. Semenov, Decidability of monadic theories, in: Proc. MFCS 84

(M.P. Chytil, V, Koubek, Eds.), Lecture Notes in Computer Science 176,

Springer-Verlag, Berlin 1984, pp. 162-175.

[Sim75] I. Simon, Piecewise testable events, Proc. 2nd GI Conf., Springer LNCS

33 (1975), 214-222.

[St82] R.S. Streett, Propositional dynamic logic of looping and converse, Inform.

Contr. 54 (1982), 121-141.

[Sta87] L. Staiger, Research in the theory of !-languages, J. Inf. Process. Cybern.

EIK 23 (1987), 415-439.

[Sta] L. Staiger, !-languages, in: Handbook of Formal Language Theory, Vol. I

(G. Rozenberg, A. Salomaa, Eds.), Springer-Verlag, New York (to appear).

[Sti96] C. Stirling, Modal and temporal logics for processes, in: Logics for Con-

currency: Structure versus Automata (F. Moller, G. Birtwistle, Eds.), Lec-

ture Notes in Computer Science 1043, Springer-Verlag, Berlin 1996, pp.

149-237.

[Str94] H. Straubing, Finite Automata, Formal Logic, and Circuit Complexity,

Birkh�auser, Boston, 1994.

[Stu75] J. Stupp, The lattice model is recursive in the original model, manuscript,

The Hebrew Univ., Jerusalem 1975.

[STT95] H. Straubing, D. Th�erien and W. Thomas, Regular Languages De�ned

with Generalized Quanti�ers, in: Information and Computation 118 (1995),

289-301.

[SW74] L. Staiger, K. Wagner, Automatentheoretische und automatenfreie

Charakterisierungen topologischer Klassen regul�arer Folgenmengen, Elek-

tron. Informationsverarbeitung u. Kybernetik EIK 10 (1974), 379-392.

[TB73] B.A. Trakhtenbrot, Y.M. Barzdin, Finite Automata, North-Holland, Am-

sterdam 1973.

[Th81] W. Thomas, A combinatorial approach to the theory of !-automata, In-

formation and Control 48 (1981), 261-283.

[Th82a] W. Thomas, Classifying regular events in symbolic logic, J. Comput.

Syst. Sci. 25 (1982), 360-375.

[Th82b] W. Thomas, A hierarchy of sets of in�nite trees, in: Theoretical Com-

puter Science (A.B. Cremers, H.P. Kriegel, Eds.), Lecture Notes in Computer

Science 145, Springer-Verlag, Berlin 1982, pp. 335-342.

70

[Th84a] W. Thomas, An application of the Ehrenfeucht-Fra��ss�e game in formal

language theory, Bull. Soc. Math. France, Mem. 16 (1984), 11-21.

[Th84b] W. Thomas, Logical aspects in the study of tree languages, in: Ninth

Coll. on Trees in Algebra and Programming (B. Courcelle, Ed.), Cambridge

Univ. Press 1984, pp. 31-49.

[Th87] W. Thomas, A concatenation game and the dot-depth hierarchy, in: Com-

putation Theory and Logic (E. B�orger, Ed.), Lecture Notes in Computer

Science 270, Springer-Verlag, Berlin 1987, pp. 415-426.

[Th90] W. Thomas, Automata on in�nite objects, in: Handbook of Theoretical

Computer Science, Vol. B (J. v. Leeuwen, Ed.), Elsevier Science Publishers,

Amsterdam 1990, pp. 135-191.

[Th91] W. Thomas, On logics, tilings, and automata, in: Automata, Languages,

and Programming (J. Leach et al., Eds.), Lecture Notes in Computer Science

510 , Springer-Verlag, Berlin 1991, pp. 441-453.

[Th95] W. Thomas, On the synthesis of strategies in in�nite games, in:

STACS'95 (E.W. Mayr, C. Puech, Eds.), Lecture Notes in Computer Science

900, Springer-Verlag, Berlin 1995, pp. 1-13.

[TL94] W. Thomas, H. Lescow, Logical speci�cations of in�nite computations,

in: A Decade of Concurrency (J.W. de Bakker et al., Eds.), Lecture Notes

in Computer Science 803, Springer-Verlag, Berlin 1994, pp. 583-621.

[TW68] J.W. Thatcher, J.B. Wright, Generalized �nite automata with an ap-

plication to a decision problem of second order logic, Math. Syst. Theory 2

(1968), 57-82.

[Var96] M.Y. Vardi, An automata-theoretic approach to linear temporal logic,

in: Logics for Concurrency: Structure versus Automata (F. Moller, G.

Birtwistle, Eds.), Lecture Notes in Computer Science 1043, Springer-Verlag,

Berlin 1996, pp. 238-266.

[VW94] M.Y. Vardi, P. Wolper, Reasoning about in�nite computations, Infor-

mation and Computation 115 (1994), 1-37.

[Wag79] K.W. Wagner, On !-regular sets, Inform. Contr. 43 (1979), 123-177.

[Wal96] I. Walukiewicz, Monadic second order logic on tree-like structures, in:

STACS'96 (C. Puech, R. Reischuk, Eds.), Lecture Notes in Computer Sci-

ence 1046, Springer-Verlag, Berlin 1996, pp. 401-414.

71

[Wil93] Th. Wilke, Locally threshold testable languages of in�nite words, in:

STACS '93 (P. Enjalbert, A. Finkel, K.W. Wagner, Eds.), Lecture Notes in

Computer Science 665, Springer-Verlag, Berlin 1993, pp. 607-616.

[Wil94] Th. Wilke, Specifying timed state sequences in powerful decidable logics

and timed automata, in: Formal Techniques in Real Time and Fault Tolerant

Systems (H. Langmaack et al., Eds.), Lecture Notes in Computer Science

863, Springer-Verlag, Berlin 1994, pp. 694-715.

[WY95] Th. Wilke, H. Yoo, Computing the Wadge degree, the Lifschitz degree,

and the Rabin index of a regular language of in�nite words in polynomial

time, in: TAPSOFT'95 (P.D. Mosses et al., Eds.), Lecture Notes in Com-

puter Science 915, Springer-Verlag, Berlin 1995, 288-302.

[YY90] A. Yakhnis, V. Yakhnis, Extension of Gurevich-Harrington's restricted

determinacy theorem: A criterion for the winning player and an explicit

class of winning strategies, Ann. Pure Appl. Logic 48 (1990), 277-279.

[Zei94] S. Zeitman, Unforgettable forgetful determinacy, J. Logic Computation 4

(1994), 273-283.

[Zie87] W. Zielonka, Notes on �nite asynchronous automata, RAIRO Inform.

Th�eor. Appl. 21 (1987), 99-135.

[Zie95] W. Zielonka, In�nite games on �nitely coloured graphs with applications

to automata on in�nite trees, Rep. 1091-95, LaBRI, Univ. de Bordeaux, to

appear in Theor. Comput. Sci..

72

