
CS 1102: Introduction to Computer Science
Ashoka University

December 21, 2024
Teaching Assistant Evaluation

TA Evaluation Problem Set

This problem set contains four questions. If something is unclear, please make reasonable assump-
tions and state them in your solution. Submit your answers as a single PDF document by
email to the instructors by January 7.

1 Mandatory Induction Question

The weak form of the Principle of Mathematical Induction states that:

P (0) ∧ (∀n ∈ N.(P (n) → P (n+ 1))) → ∀n ∈ N.P (n) (1)

The Cauchy form of the Principle of Mathematical Induction states that:

P (1) ∧ (∀n ∈ N.(P (n) → P (2n))) ∧ (∀n ∈ N.(P (n+ 1) → P (n))) → ∀n ∈ N.P (n) (2)

Prove that Equation 1 is equivalent to Equation 2.

2 Programming

Design and implement a Python program to determine whether a given Sudoku puzzle has a unique
solution. Your program should verify the uniqueness of the solution and include a proof of the
correctness of the algorithm used.

3 Debugging

The following OCaml code contains a semantic (logical) error. Your task is to:

1. Explain what the code is intended to do,

2. Identify the semantic (logical) error in the code,

3. Provide an example input that triggers the error, and

4. Write a corrected version of the code.

let rec u x y =

match (x, y) with

| ([], _) -> y

| (_, []) -> x

| (h1 :: t1, h2 :: t2) ->

if h1 <= h2 then h1 :: (u t1 y) else h2 :: (u x t2)

let s l =

let l’ = (List.length l) / 2 in

1



let rec t n m =

match (n, m) with

| (0, _) -> []

| (_, []) -> []

| (c, h :: t) -> h :: (t (c - 1) t)

in

let rec d p q =

match (p, q) with

| (0, r) -> r

| (_, []) -> []

| (z, _ :: r) -> (d (z - 1) r)

in

((t l’ l), (d l’ l))

let rec ms z =

match z with

| [] -> []

| [_] -> z

| _ ->

let (a, b) = (s z) in

u (ms a) (ms b)

4 Grading Exercise

Design a rubric for the following, grade the two submissions, and provide constructive feedback and
criticism as you would in a course.

Problem: Let n-bonacci number Fn be defined as follows:

• For all k ∈ N, k < n, Fn(k) = 1

• For all k ≥ n, F (k) =
∑n−1

i=0 Fn(k − i)

This is a generalization of Fibonacci numbers. Write a pseudo-code to efficiently compute Fn(2n),
the 2nth n-bonacci number.

Solution A:

function n_bonacci_A(n, k):

if k < n:

return 1

terms = [1] * n

for i from n to k:

next_term = 0

2



for j from 0 to n - 1:

next_term += terms[j]

for j from 0 to n - 2:

terms[j] = terms[j + 1]

terms[n - 1] = next_term

return terms[n - 1]

Solution B:

function n_bonacci_B(n, k):

memo = array of size k initialized to -1

function helper(x):

if memo[x] != -1:

return memo[x]

if x <= n:

return 1

sum = 0

for i from 1 to n:

sum += helper(x - i)

memo[x] = sum

return sum

return helper(k)

3


