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Abstract
Boolean networks (BNs) are widely used to model the qualitative dynamics of biological systems. Besides the logical rules

determining the evolution of each component with respect to the state of its regulators, the scheduling of component

updates can have a dramatic impact on the predicted behaviours. In this paper, we explore the use of Read (contextual)

Petri Nets (RPNs) to study dynamics of BNs from a concurrency theory perspective. After showing bi-directional trans-

lations between RPNs and BNs and analogies between results on synchronism sensitivity, we illustrate that usual updating

modes for BNs can miss plausible behaviours, i.e., incorrectly conclude on the absence/impossibility of reaching specific

configurations. We propose an encoding of BNs capitalizing on the RPN semantics enabling more behaviour than the

generalized asynchronous updating mode. The proposed encoding ensures a correct abstraction of any multivalued

refinement, as one may expect to achieve when modelling biological systems with no assumption on its time features.

Keywords Discrete dynamical systems � Models of concurrency � Synchronism � Reachability

1 Introduction

Boolean networks (BNs) model dynamics of systems

where several components (nodes) interact. They specify

for each node an update function to determine its next

value according to the configuration (global state) of the

network. In addition, an update mode for scheduling the

application of functions has to be specified to determine the

set of reachable configurations.

BNs are increasingly used to model dynamics of bio-

logical interaction networks, such as gene networks and

cellular signalling pathways. In these practical applica-

tions, it is usual to assess the accordance of a BN with the

concrete modeled system by checking if the observed

behaviours are reproducible by the abstract BN (Rougny

et al. 2016; Traynard et al. 2016; Collombet et al. 2017).

For instance, if one observes that the system can reach a

configuration y from configuration x, one may expect it is

indeed the case in the BN model. The designed Boolean

functions typically do not model the system correctly

whenever it is not the case and should thus be fixed prior to

further analysis. With this perspective, the choice of the

update mode is crucial, as it is known to have a strong

influence on the reachable configurations of the network.

More fundamentally, the relationships between different

updating modes have been extensively studied for func-

tion-centered models such as cellular automata (Schönfisch

and de Roos 1999; Baetens et al. 2012) and Boolean net-

works (Kauffman 1969; Thomas 1973; Garg et al. 2008;

Aracena et al. 2009; Noual and Sené 2017; Palma et al.

2016), on which this article is focused.
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Interestingly, the study of updating mechanisms in net-

works and their effect on the emerging global dynamics has

also been widely addressed in the field of discrete and

hybrid concurrent systems, especially with Petri nets

(Janicki and Koutny 1997; Baldan et al. 2001; Busi and

Pinna 1996; Vogler 2002; Winkowski 1998). Petri nets are

a classical formal framework for studying concurrency,

offering a fine-grained specification of the conditions

(partial configurations) for events (partial configuration

changes). This decomposed view of causality and effect of

updates enables capturing events which can indifferently

occur sequentially or in parallel, and events having con-

flicts (triggering one would pre-empt the application of the

second).

In the literature, many variants of Petri nets have been

employed to model and simulate various biological pro-

cesses (see Goss and Peccoud 1998; Popova-Zeugmann

et al. 2005 for examples and Chaouiya (2007) for a review

paper), but little work considered the link between the

theoretical work on concurrency in Petri nets and the the-

oretical work in Boolean networks. In Steggles et al.

(2007), Chaouiya et al. (2011), Chatain et al. (2014),

encodings of BNs and their multi-valued extension in

certain classes of Petri nets have been proposed, often as

means to take advantage of existing dynamical analysis

already implemented for Petri nets, e.g., model-checking.

This paper aims at building a bridge between the theo-

retical work in BNs on the one hand and Read Petri Nets

(RPNs), also known as contextual Petri nets, on the other.

RPNs augment ordinary Petri Nets (PNs) with read arcs to

model read-only access to resources. It is always possible

to simulate a RPN by an ordinary PN, see Fig. 1 and the

discussion below. Our choice of using RPN is motivated by

the fact that the connection between BNs and RPNs is more

intuitive; but there is also an important technical advantage

in using RPNs directly, rather than equivalent ordinary

models.

Let us examine Fig. 1 more closely. In the read netR on

the left hand side, transitions a and b will be enabled while

p is marked, i.e. between the firings of c and d; once a

token is available on p, both a and b can fire independently

and jointly, because the read arcs linking them to p do not

require removal of the token from p. In N 1 in the middle,

the firing of a and b in any order is still possible, however

their synchronous firing is prohibited by the conflict over

the token on p. Only Petri net N 2 is equivalent to R;

synchronous firing of a and b is obtained at the expense of

duplicating p by creating p0 and p00. In other words, faithful

rendering of read net behaviour by ordinary nets requires

the creation of multiple places for each place ’read’ by

several transitions, in order to pass from a read net to an

ordinary net model. As will be seen, the constructions

required for translation between read nets and BN in their

turn also multiply place elements ; putting these con-

structions together is possible, but makes the resulting nets

still larger and a lot less intuitive to apprehend and analyze.

In this paper, we consider the class of safe (or 1-boun-

ded) RPNs where each place can be marked by at most one

token, which makes it a natural choice for linking with

Boolean networks. This class has been extensively studied

in the literature and enables fine-grained definitions of

different concurrent semantics as it is detailed in Sect. 3

and on which results of this article are built upon.

Below, we will give bi-directional equivalent connec-

tions between the two formalisms of BNs and RPNs; this

allows to we use a classical result from Petri net theory to

show the PSPACE-completeness of reachability in asyn-

chronous BNs. Then, we exhibit analogies of results on

update mode comparisons. Importantly, we show how the

concurrent view of updates brings new updating modes for

BNs, enabling new behaviours and meeting with a correct

abstraction of multi-level systems. This result is illustrated

on a small BN which occurs in different models of actual

biological networks, and for which the usual updating

modes fail to capture behaviours existing in refined models

(Sect. 7.1; Fig. 9).

Outline. Sect. 2 gives basic definitions of BNs, their

asynchronous, synchronous, and generalized asynchronous

update mode, and their influence graph. Section 3 defines

safe RPNs and their atomic, step, and interval semantics.

Section 4 brings encodings of BNs into safe RPNs and

vice-versa, the latter allowing to derive that reachability in

BNs is PSPACE-complete. Section 5 establishes an anal-

ogy between the results on synchronism sensitivity in BNs

and RPNs. Section 6 provides an encoding of the interval

semantics of RPNs into asynchronous BNs, initially

•
p1

•
p1

•
p1

•
p2

•
p2

•
p2

• p3 • p3 • p3

p4 p4 p4

p
p p p

p5 p5p5

p6 p6 p6

a a ab b b

c c c

d d d

Fig. 1 A Read Petri net R (left)

and two different interpretations

N 1 and N 2 (center, right) of R
as ordinary Petri nets; following

(Baldan et al. 2012)
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published in the conference paper (Chatain et al. 2018).

Section 7 first illustrates the benefits of the interval

semantics on a simple BN showing that usual BN seman-

tics can miss plausible behaviours. Then, an extension of

the interval semantics is proposed in order to meet with a

correct abstraction of behaviours achievable in a multi-

valued refinement. Finally, Sect. 8 summarizes the contri-

butions and discusses further work.

Notations If S is a finite set, jSj denotes its cardinality.
B ¼ f0; 1g, and we write ^, _, : for logic operators and,

or, not; given a set of literals L ¼ fl1; . . .; lkg,
V

L �
l1 ^ . . . ^ lk with

V
; ¼ 1, and

W
L � l1 _ . . . _ lk with

W
; ¼ 0.

2 Boolean networks with function-centered
specification

Given a configuration x 2 Bn and i 2 f1; . . .; ng, we denote
xi the ith component of x, so that x ¼ x1. . .xn. Given two

configurations x; y 2 Bn, the components that differ are

noted Dðx; yÞ¼D fi 2 f1; . . .; ng j xi 6¼ yig.

Definition 1 (Boolean network) A Boolean network (BN)

of dimension n is a collection of functions f ¼ hf1; . . .; fni
where 8i 2 f1; . . .; ng; fi : Bn ! B.

Given x 2 Bn, we write f(x) for f1ðxÞ. . .fnðxÞ.
Figure 2a shows an example of BN of dimension 3.

When modelling biological systems, each node i 2
f1; . . .; ng usually represents a biochemical species, being

either active (or present, value 1) or inactive (or absent,

value 0). Each function fi indicates how is the evolution of

the value of i influenced by the current value of other

components j 2 f1; . . .; ng. However, this description can

be interpreted in several ways, therefore several updating

modes coexist for BNs, depending on the assumptions

about the order in which the evolutions predicted by the fi
apply.

The (fully) asynchronous updating assumes that only

one component is updated at each time step. The choice of

the component to update is non-deterministic.

Definition 2 (Asynchronous updating) Given a BN f, the

binary irreflexive relation �!f
async

� Bn � Bn is defined as:

x�!f
async

y()
D

9i 2 f1; . . .; ng;Dðx; yÞ ¼ fig ^ yi ¼ fiðxÞ:

We write �!f
async

� for the transitive closure of �!f
async

.

The synchronous updating can be seen as the opposite:

all components are updated at each time step. This leads to

a purely deterministic dynamics.

Definition 3 (Synchronous updating) Given a BN f, the

binary irreflexive relation �!f
sync

� Bn � Bn is defined as:

x�!f
sync

y()
D

x 6¼ y ^ 8i 2 f1; . . .; ng; yi ¼ fiðxÞ:

By forcing all the components to evolve simultaneously,

the synchronous updating makes a strong assumption on

the dynamics of the system. In many concrete cases, for

instance in systems biology, this assumption is often

unrealistic, at least because the components model the

quantity of some biochemical species which evolve at

different speeds.

As a result, the synchronous updating fails to describe

some behaviours, like the transition 010 ! 011 repre-

sented in Fig. 2c which represents the activation of species

3 when species 1 is inactive and species 2 is active

(f3ð010Þ ¼ 1). There are also transitions which are possible

in the synchronous but not in the asynchronous updating,

for instance 000 ! 110. Remark that 110 is not even

reachable from 000 in the asynchronous updating.

The generalized asynchronous updating generalizes

both the asynchronous and the synchronous updating: it

allows updating synchronously any nonempty subset of

components.

Definition 4 (Generalized asynchronous updating) Given

a BN f, the binary irreflexive relation �!f
gen

� Bn � Bn is

defined as:

f1(x)
Δ= ¬x2

f2(x)
Δ= ¬x1

f3(x)
Δ= ¬x1 ∧ x2

(a)

1

3

2

(b)

010 110 011 111

000 100 001 101

(c)

Fig. 2 a Example BN f of

dimension 3; b Influence graph

G(f); positive edges are with

normal tip; negative edges are

with bar tip; c Transition

relations between states in Bn

according to the generalized

asynchronous semantics of f
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x�!f
gen

y()
D

x 6¼ y ^ 8i 2 Dðx; yÞ : yi ¼ fiðxÞ:

Clearly, x�!f
async

y ) x�!f
gen

y and x�!f
sync

y ) x�!f
gen

y. The

converse propositions are false in general.

Note that we forbid ‘‘idle’’ transitions (x ! x) regardless

of the updating mode.

Other updating modes like sequential or block sequen-

tial have also been considered in the literature on cellular

automata and BNs (Baetens et al. 2012; Aracena et al.

2009), and usually lead to transitions allowed by the gen-

eralized asynchronous updating.

For each node i 2 f1; . . .; ng of the BN, fi typically

depends only on a subset of nodes of the network. The

influence graph of a BN (also called interaction or causal

graph) summarizes these dependencies by having an edge

from node j to i if fi depends on the value of j. Formally, fi
depends on xj if there exists a configuration x 2 Bn such

that fiðxÞ is different from fiðx0Þ where x0 differs from x

solely in the component j (x0j ¼ :xj). Moreover, assuming

xj ¼ 0 (therefore x0j ¼ 1), we say that j has a positive

influence on i (in configuration x) if fiðxÞ\fiðx0Þ, and a

negative influence if fiðxÞ[ fiðx0Þ. It is possible that a node
has different signs of influence on i in different configu-

rations, leading to non-monotonic fi. It is worth noticing

that different BNs can have the same influence graph.

Definition 5 (Influence graph) Given a BN f, its influence

graph G(f) is a directed graph ðf1; . . .; ng;Eþ;E�Þ with

positive and negative edges such that

ðj; iÞ 2 Eþ()
D

9x; y 2 Bn : Dðx; yÞ ¼ fjg; xj\yj; fiðxÞ\fiðyÞ

ðj; iÞ 2 E�()
D

9x; y 2 Bn : Dðx; yÞ ¼ fjg; xj\yj; fiðxÞ[ fiðyÞ

A (directed) cycle composed of edges in Eþ [ E� is said

positive when it is composed by an even number of edges

in E� (and any number of edges in Eþ), otherwise it is

negative.

When Eþ \ E� ¼ ;, we say that f is locally monotonic.

The influence graph is an important object in the liter-

ature of BNs (Thieffry and Thomas 1995; Aracena et al.

2004). For instance, many studies have shown that one can

derive dynamical features of a BN f by the sole analysis of

its influence graph G(f). Importantly, the presence of neg-

ative and positive cycles in the influence graph, and the

way they are intertwined can help to determine the nature

of attractors (that are the smallest sets of configurations

closed by the transition relationship) (Richard 2010), and

derive bounds on the number of fixpoints and attractors a

BN having the same influence graph can have (Remy et al.

2008; Aracena 2008; Aracena et al. 2017).

3 Read Petri Nets with transition-centered
specifications

In the semantics of BNs, each node computes its next value

according to the value of the other nodes. We have seen in

the previous section that this general rule does not suffice

to define the precise behaviour and several updating modes

can be considered.

This situation is very similar to what happens in con-

textual or Read Petri nets (RPNs), where read arcs have

been introduced to model read-only access to resources, for

a matter of concurrency. Interestingly, the introduction of

read arcs in Petri nets has also led to several variants of the

semantics. In this section, we present some of them, mainly

taken from Chatain et al. (2015). Next, relying on a natural

encoding of BNs in RPNs (Sect. 4), we will establish a

correspondence between updating modes for BNs and

semantics of RPNs. In particular, we transpose the interval

semantics of RPNs to a new semantics for BNs (Sect. 6)

which retrieves some plausible scenarios that were missed

by other updating modes.

3.1 Read petri nets

We consider only safe Read Petri nets (RPNs), i.e., RPNs

with at most one token in each place at any time.

Definition 6 (Read Petri Net (RPN)) A Read Petri net is a

tuple ðP; T; pre; cont; post;M0Þ where P and T are finite

sets of places and transitions respectively, pre, cont and

post map each transition t 2 T to its (nonempty) preset

denoted �t¼D preðtÞ � P, its (possibly empty) context

denoted t¼D contðtÞ � P n �t and its (possibly empty) postset

denoted t�¼D postðtÞ � P; M0 � P is the initial marking. We

usually denote �t¼D �t [ t.

For simplicity, we assume that for every transition t, its

context is disjoint from its preset and postset.

A RPN is represented as a graph with two types of nodes:

places (circles) and transitions (rectangles). Presets are rep-

resented by arrows from places to transitions, postsets by

arrows from transitions to places, and contexts by undirected

edges, called read arcs, between places and transitions. The

initial marking is represented by tokens in places. Figure 3

shows an example of RPN. The transition a, for instance, has

p1 in its preset, p2 in its context and p4 in its postset.
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3.2 Atomic semantics

A marking of a safe RPN is a set M � P of marked places.

A Petri net starts in its initial marking M0. A transition

t 2 T is enabled in a marking M if all the places of its

preset and context are marked, i.e., �t � M. Then t can fire

from M, leading to the marking M0¼D ðM n �tÞ [ t�. In this

case, we write M�!N;t
atom

M0 or simply M�!N
atom

M0.

As we consider only safe RPNs, we assume that if a

transition t 2 T is enabled in a marking M, then

ðM n �tÞ \ t� ¼ ;.

Definition 7 (Atomic semantics, a-run) We call firing

sequence of N under the atomic semantics, or a-run, any

sequence r¼D ðt1. . .tnÞ of transitions for which there exist

markings M1; . . .;Mn such that for all i 2 f1; . . .; ng, firing
ti from Mi�1 is possible and leads to Mi.

For instance, the net in Fig. 3 has two possible firing

sequences: (a) and (bc). However, d can never fire because

that would require to fire both a and b first, and firing one

of a, b disables the other.

3.3 Non-atomic semantics

In this section, we discuss two semantics for concurrent

firing of multiple transitions. One is the well-known step

semantics (Janicki and Koutny 1993), in which multiple

transitions can fire simultaneously. This is typically the

case of a and b in the net of Fig. 3, which are both enabled

and have disjoint presets, but cannot fire together according

to the atomic semantics. The step semantics can be inter-

preted as first checking whether all members of a set of

transitions can fire, and then firing them simultaneously.

Intuitively, the step semantics is somehow similar to the

general asynchronous updating as it considers any set of

fireable transitions; whereas the maximal step semantics

which considers only maximal sets of fireable transitions is

analoguous to the synchronous updating. We then recall the

interval semantics introduced in Chatain et al. (2015),

which allows a more liberal choice of checking and firing

transitions in a set.

We present the semantics under the assumption that the

underlying net is safe even under these two semantics,

which allow more possibilities than the atomic one.

3.3.1 Step semantics

We first recall the step semantics (Janicki and Koutny

1993).

Definition 8 (Step semantics, s-run) Let N be a RPN. A

step is a set S of transitions of N. It can fire from config-

uration M and lead to configuration M0, written M�!N;S
step

M0 or

simply M�!N
step

M0, if

– every t 2 S is enabled in M,

– the presets of the transitions in S are disjoint, and

– M0 ¼ M n
S

t2S
�t

� �
[
S

t2S t
�.

We call s-run of N any sequence r¼D ðS1. . .SnÞ of steps for
which there exist markings M1; . . .;Mn such that for all

i 2 f1; . . .; ng, step Si can fire from Mi�1 and leads to Mi.

A variant of step semantics, called maximal step

semantics has received interest in the literature (Janicki

et al. 1986; Courtiat and Saı̈douni 1995).

Definition 9 (Maximal step semantics) The firing rule for

the maximal step semantics is defined as M�!N;S
mstep

M0 (or

simply M�!N
mstep

M0) iff M�!N;S
step

M0 and no larger step S0)S can

fire from M.

In the example of Fig. 3, the step semantics allows one

to fire a and b in one step since they are both enabled in the

initial marking and �a \ �b ¼ ;. This gives the s-run

ðfa; bgÞ in addition to the others which were already pos-

sible under the atomic semantics; for instance the a-run

involving b followed by c, denoted ðbcÞ for the atomic

semantics, is simply rewritten as the s-run ðfbgfcgÞ under
the step semantics. However, transition d remains dead

since none of these s-runs contains all of a, b, and c.

The intuitive model underlying the step semantics is that

all the transitions in the step can first check, in any order,

whether they are enabled and not in conflict with one

another, i.e., their presets are disjoint. Once the checks

have been performed, they can all fire, again in any order.

•
p1

•
p2

• p3

p4 p5

p6

a b

c

d

Fig. 3 A Read Petri net (RPN). Neither atomic semantics nor step

semantics allow d to fire, while the more permissive non-atomic

semantics allows it
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Put differently, if we denote the checking phase of a

transition t by t� and its firing phase by tþ, then every step

consists of any permutation of the actions of type t� (for all

transitions t in the step), followed by any permutation of

the actions tþ. The notion introduced in Definition 10

formalizes this intuition.

Definition 10 (s	-run) For every s-run ðT1. . .TnÞ of a

RPN N, every concatenation u�1 :u
þ
1 : � � � :u�n :uþn of sequen-

ces u�i and uþi , is an s	-run of N, where every u�i is a

permutation of the set ft� j t 2 Tig and every uþi is a

permutation of the set ftþ j t 2 Tig (where Ti is a set of

transitions of N).

For example, the s-run ðfbgfcgÞ yields the s	-run

ðb�bþc�cþÞ and the s-run ðfa; bgÞ yields four s	-runs:

ða�b�aþbþÞ, ða�b�bþaþÞ, ðb�a�aþbþÞ and ðb�a�bþaþÞ.

3.3.2 Splitting transitions for understanding steps

Definition 10 formalizes a semantics of RPNs in which the

firing of a transition does not happen directly, but in two

steps, the checking of the pre-conditions and the actual

execution. In this section, we generalize this idea.

The left-hand side of Fig. 4 shows a part of the net in

Fig. 3, which consists of transition a with its preset fp1g,
context fp2g, and postset fp4g. The construction on the

right-hand side of 4 illustrates the idea of splitting firing

transitions into two phases:

– every transition t is split into t� and tþ;
– every place p is duplicated to pc (meaning token in p

available for consumption) and pr (meaning token in p

available for reading).

Similar ideas about splitting transitions can be found in

several works, for instance in Vogler (1995).

Intuitively, if we apply this construction to all transitions

from Fig. 3, then the s	-runs of that net correspond to

a-runs of the newly constructed net. The following Defi-

nition 11 provides the precise details of the construction.

Definition 11 ((split(N))) Given a RPN N ¼ ðP; T;
pre; cont; post;M0Þ, splitðNÞ¼

D ðP0; T 0; pre0; cont0; post0;M0
0Þ

is the RPN where

• T 0 contains two copies, denoted t� and tþ of every

transition t 2 T .

• P0 contains two copies, denoted pc and pr of every place
p 2 P, plus one place pt per transition t 2 T .

• �t�¼D fpc j p 2 �tg
• t�¼D fpr j p 2 tg
• t��¼D fptg
• �tþ¼D fpr j p 2 �tg [ fptg
• tþ¼D ;
• tþ�¼D fpc j p 2 t�g [ fpr j p 2 t�gg
• M0

0¼
D fpc j p 2 M0g [ fpr j p 2 M0g

We now formally prove the intuition mentioned above:

Lemma 1 Every s	-run r	 of N is an a-run of splitðNÞ.
Moreover r	 reaches the marking fpc j p 2 Mg
[fpr j p 2 Mg, where M is the marking of N reached after

the s-run r from which r	 is obtained.

Proof We proceed by induction on the length of r. The
case r ¼ ðÞ is trivial. Now, let r	 ¼ u�1 :u

þ
1 : � � � :u�n :uþn be

an s	-run obtained from an s-run r ¼ ðT1. . .TnÞ, assume

the property true for u�1 :u
þ
1 : � � � :u�n�1:u

þ
n�1 and denote Mn�1

the marking reached after ðT1. . .Tn�1Þ. By induction

hypothesis, u�1 :u
þ
1 : � � � :u�n�1:u

þ
n�1 reaches the marking fpc j

p 2 Mn�1g [ fpr j p 2 Mn�1g of splitðNÞ. The fact that Tn
is a valid step from Mn�1 implies that

S
t2Tn

�t � Mn�1 and

that the presets of the transitions in Tn are disjoint. This

allows one to fire all the t�, t 2 Tn in any order and reach

the marking fpc j p 2 Mn�1 n
S

t2Tn
�tg [ fpr j p 2

Mn�1g [ fpt j t 2 Tng of splitðNÞ. Now the tþ, t 2 Tn, are

all enabled and their presets are disjoint. They can in turn

be fired in any order, reaching the desired marking of

splitðNÞ. h

Note that the converse of Lemma 1 does not hold. For

instance, for the net N from Fig. 3, the net splitðNÞ admits

the a-run a�b�bþc�cþaþ, which is not an s	-run of N.

3.3.3 Interval semantics

We have seen that the construction splitðNÞ admits firing

sequences that cannot be mapped back to executions under

either the atomic or the step semantics. In this section, we

shall introduce the interval semantics, which is more

general than the step semantics, and whose interpretation

p1 p2

p4

a

pc
1 pr

1 pc
2 pr

2

pa

pc
4 pr

4

a−

a+

Fig. 4 The splitting of transition a (left) into a� and aþ (right)
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on a net N does correspond to the feasible executions in

splitðNÞ.

Definition 12 (Interval semantics, i-run) Every a-run of

splitðNÞ is called i-run of N, or run of N under the interval

semantics.

Coming back to the example of Fig. 3, transition d can

fire under the interval semantics, for instance after the i-run

a�b�bþc�cþaþd�dþ where transitions b and c complete

the firing during the period in which a fires. Under the

atomic semantics, a and b are in conflict, which prevents d

from firing. Under the step semantics, a and b can fire in

the same step, but then c cannot fire. Under the interval

semantics, d can also fire.

Recall that we introduced t� and tþ to represent dif-

ferent phases during the execution of transition t. An

obvious question is whether the new semantics can lead to

runs in which a transition ‘gets stuck’ during its execution.

The following Lemma 2 affirms that this is not the case:

once t� is fired, nothing can hinder tþ from firing too.

Definition 13 (complete marking) A marking of splitðNÞ
is complete if no pt is marked.

In particular, the initial marking is complete.

Definition 14 (complete i-run) An i-run is complete if for

each transition t� in it, it includes the corresponding

transition tþ.

Lemma 2 Every i-run can be completed: for every i-run

r, there exists a suffix l which matches all the unmatched

t�, and such that rl is an i-run. Moreover, complete i-runs

(and only them) lead to complete markings.

Proof As long as a t� is unmatched, �tþ remains included

in the marking: no other transition consumes these tokens.

Hence, it suffices to fire all the tþ corresponding to the

unmatched t�, in any order. h

Now, relating splitðNÞ with the original net N, we map

naturally every marking M of N to the complete marking

M0 of splitðNÞ defined as M0¼D fpc j p 2 Mg [fpr j p 2 Mg.
We get of course that

M1�!
N;t

atom
M2)M0

1�!
N;t�

atom
�!N;t

þ

atom
M0

2 ;

but in general the interval semantics induces more runs: for

all markings M1 and M2 of N, we write M1�!
N

istep

� M2 when

M0
1�!

N

atom

� M0
2.

4 Encodings

4.1 Coding boolean networks in safe read petri
nets

The translation of BNs into safe Petri nets has been

addressed in the literature (e.g. Chaouiya 2007; Chaouiya

et al. 2011; Chatain et al. 2014; Chaouiya et al. 2004). We

provide here a similar encoding of BNs into safe RPNs,

with the explicit specification of the context of transitions,

and with notations that will be used in Sect. 5. The

encoding can be easily generalized to multi-valued net-

works to safe RPNs, following (Chatain et al. 2014; Pau-

levé 2017).

BNs translate into a special type of RPNs:

• complemented: for every place p there is exactly one

distinct place p such that

�p ¼ p� ^ p� ¼ �p ^ 8t 2 T : p 2 t ) p 62 t;

• Boolean: there is a surjection var : P ! f1; . . .; ng such

that

8p; p0 2 P : varðpÞ ¼ varðp0Þ ,p0 2 fp; pg;

and, subsequently, a mapping val : P ! B which

satisfies

8p 2 P : valðpÞ þ valðpÞ ¼ 1:

Moreover, any reachable marking M satisfies

8p 2 P : p 2 M , p 62 M:

• transition dichotomy: every transition t 2 T has exactly

one input place p and one output place �p. If valðpÞ ¼ 0

then call t the up-transition upðvarðpÞÞ of varðpÞ,
otherwise the down-transition dwðvarðpÞÞ of varðpÞ.

Let us consider a BN f of dimension n. Each component

v 2 f1; . . .; ng is modeled as two places v0 and v1 repre-

senting the two values possible for v. Then a Petri net

transition vþ is defined for each conjunctive clause of the

disjunctive normal form of ð:xv ^ fvðxÞÞ. Such a transition

consumes a token in the place v0 and produces a token in

the place v1, and its context is formed by the places cor-

responding to the literals of the conjunction other than :xv:
for each component v0 2 f1; . . .; ng, v0 6¼ v, if the clause

contains xv0 , the context contains the place v
0
1; if the clause

contains :xv0 , the context contains the place v00. A transi-

tion v� is defined similarly for each conjunctive clause of

the disjunctive normal form of ðxv ^ :fvðxÞÞ, such that

�ðvþÞ ¼ ðv�Þ� ¼ fv0gand

Figure 5 shows the translation of the BN of Fig. 2 into

RPN.
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Hereafter, Definition 15 gives a formalization of this

encoding, and Theorem 1 states its correctness with respect

to the asynchronous, synchronous, generalized asyn-

chronous updating modes, and RPN atomic, maximal step,

and step semantics, respectively. Given a Boolean formula

F, we write DNF½F
 for the set of conjunctive clauses in the
disjunctive normal form of F0. A clause C 2 DNF½F
 is
then a set of literals, positives or negatives. It is worth

noticing that the resulting RPN can have a number of

transitions exponential in the number of literals in the

Boolean functions.

Definition 15 Given a BN f of dimension n and a con-

figuration y, ðjf jÞ is the RPN ðP; T ; pre; cont; post;M0Þ such
that

• P ¼ f1; . . .; 2ng are the places;

• T ; pre; cont; post are the smallest sets such that for each

i 2 f1; . . .; ng, for each clause C 2 DNF½:xi ^ fiðxÞ

(resp. C 2 DNF½xi ^ :fiðxÞ
), there is a transition t 2 T

such that �t ¼ fig (resp. �t ¼ fiþ ng), t� ¼ fiþ ng
(resp. t� ¼ fig), and t ¼ fj j ½:xj
 2 C; j 6¼ ig[ fjþ
n j ½xj
 2 C; j 6¼ ig;

• M0 ¼ ðjyjÞ

where, for any configuration x 2 Bn, ðjxjÞ¼D fiþ nxi j i 2
f1; . . .; ngg (e.g., ðj010jÞ ¼ f1; 5; 3g, ðj101jÞ ¼ f4; 2; 6g).

Theorem 1 Given a BN f of dimension n, for any con-

figurations x; y 2 Bn,

x�!f
async

y () ðjxjÞ�!ðjf jÞ
atom

ðjyjÞ;

x�!f
sync

y () ðjxjÞ�!ðjf jÞ
mstep

ðjyjÞ;

x�!f
gen

y () ðjxjÞ�!ðjf jÞ
step

ðjyjÞ:

Proof For any i 2 f1; . . .; ng, fiðxÞ 6¼ xi if and only if there

exists a transition t of ðjf jÞ where �t � ðjxjÞ. h

4.2 Coding read petri nets in boolean networks

We have given above a translation of BNs into (a special

class of) RPNs. The comparison of both models also leads

us into the opposite direction.

In the following, fix a safe RPN N ¼ ðP; T ; pre; cont;
post;M0Þ. The BN associated to N has jPj þ jT j compo-

nents, where the first jPj components encode the marking

of the corresponding places, and the jTj other components

encode the occurring transitions. Without loss of general-

ity, we assume that places and transitions range over

indexes from 1 to jPj þ jT j, i.e., P [ T � f1; . . .; jPjþjTjg.
In order to simplify the encodings, we additionally assume

the RPNs to be loop-free, i.e., for every transition t 2 T ,
�t \ t� ¼ ;. It is well known that loops can be replaced by

read arcs without any effect on the (atomic) semantics.

Transporting the dynamics, i.e., the actual firing of

transitions, into the framework of BNs constitutes the non-

trivial part of the translation. A RPN transition typically

has more than one output place, while the functions in BNs

write on one single variable. Our encoding decomposes the

firing of a RPN transition into several updates of the BN.

Essentially, when components corresponding to the pre-

condition and context of a transition t are marked, and if no

other transition t0 is already occurring, the tth component of

the BN can be updated to 1. Then, the components related

to the input and output places of t are updated (in any

order) to apply their respective un-marking and marking.

Once all these components have been updated, the tth

component is updated to 0.

It results that a transition t is occurring, encoded by the

value 1 of the tth component, if and only if either (i) no

transition is occurring, and all components corresponding

to places in the pre-condition and context of t have value 1,

or (ii) t is already occurring and at least one input (resp.

output) place has not been unmarked (resp. marked) yet. A

component corresponding to a place p has value 1 if and

only if either one of transition producing p is occurring, or

if it has already value 1 and none transition consuming it is

occurring.

Hereafter, Definition 16 provides a formalization of the

encoding of a safe RPN into a BN and Theorem 2 states its

correctness in the scope of the asynchronous updating

•1

1↑

1↓

4

• 2

2↑

2↓

5

•3

3↑

6
3↓1

3↓2

Fig. 5 RPN encoding of the BN of Fig. 2 hf1ðxÞ ¼ :x2; f2ðxÞ ¼
:x1; f3ðxÞ ¼ :x1 ^ x2i and configuration 000
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(atomic); note that the correctness also holds for the gen-

eralized asynchronous (step semantics) and synchronous

(maximal step semantics) updating.

Definition 16 Given a safe loop-free RPN N ¼ ðP; T ; pre;
cont; post;M0Þ, sNt is the BN of dimension jPj þ jT j such
that

8p 2 P; sNtpðxÞ ¼
_

t2�p

xt

 !

_ xp ^
^

t2p�
:xt

 !

8t 2 T; sNttðxÞ ¼
^

p2�t

xp ^
^

t02T
:xt0

 !

_ xt ^
_

p2t�
:xp _

_

p2�t

xp

 ! !

Given a marking M � P of N, the corresponding configu-

ration of sNt is sMt 2 Bn where 8p 2 M; sMtp ¼ 1,

8p 2 P nM; sMtp ¼ 0, and 8t 2 T; sMtt ¼ 0.

As an example, let us consider the RPN of Fig. 4(left),

which consists 3 places p1, p2, p4, and one transition a,

such that �a ¼ fp1g, a� ¼ fp4g, and a ¼ fp2g. The above

encoding into BN leads to 4 Boolean functions:

fp1ðxÞ ¼ xp1 ^ :xa fp2ðxÞ ¼ xp2 fp4ðxÞ ¼ xa _ xp4

faðxÞ ¼ ðxp1 ^ xp2Þ _ ðxa ^ ð:xp4 _ xp1ÞÞ

Theorem 2 For a safe RPN N ¼ ðP; T ; pre; cont;
post;M0Þ, and any pair of markings M;M0 � P, one has

M�!N
atom

� M0 () sMt�!sNt
async

� sM0t

Proof If M ¼ M0, the proof is trivial; in the following we

consider M 6¼ M0.

()) Let us assume thatM�!N
atom

M0. Then there exists t 2 T

such that �t � M and M0 ¼ ðM n �tÞ [ t�. Thus, sNtt
ðsMtÞ ¼ 1, and therefore, there exists y 2 Bn such that

x�!sNt
async

y with Dðx; yÞ ¼ ftg. Then, assuming �t \ t� ¼ ;, for

each place p 2 �t, because t 2 p� and yp ¼ 1, sNttðyÞ ¼ 0,

and for each place p 2 t�, because t 2 �p, sNtp ¼ 1.

Therefore, by updating the components p for p 2 �t [ t�

in any ordering, we obtain a configuration z where all

components are 0 except the components p; 8p 2 M0, and
the component t. Then, because sNttðzÞ ¼ 0, the latter

component is set to 0, resulting in the configuration sM0t.

(() Let us assume there exists y 2 BjPjþjT j such that

sMt�!sNt
async

y. Necessarily, there is a unique t 2 T such that

yt ¼ 1; moreover, �t � M. Remark that as long as the tth

component of a configuration x is 1, none of the other

components t0 for t0 2 T ; t0 6¼ t can be set to 1 (because

sNtt0 ðxÞ ¼ 0). Moreover, remark that in the configuration

y, fp 2 P j yp 6¼ sNtpg ¼ �t [ t�, and that the component t

can be set to 0 only when all these latter components have

been updated. Therefore, with M00 ¼ ðM n �tÞ [ t�, we

obtain that sMt�!sNt
async

� sM00t and M�!N
atom

M00. h

The reachability problem consists in deciding if there

exists a sequence of transitions from a given configuration

(marking) x to a given configuration y. The reachability

problem is PSPACE-complete in safe RPNs with asyn-

chronous update mode (Cheng et al. 1995). By linear

reduction to BNs, we therefore obtain that reachability in

BNs is PSPACE-hard:

Corollary 1 Reachability in asynchronous BNs is

PSPACE-hard.

Finally, one can remark that deciding the reachability in

BNs is in PSPACE: given a BN of dimension n and the

initial configuration x, let us define a counter using n bits,

initially with value 0. Then, while the counter has value

strictly less that 2n and the current configuration is not

equal to y, non-deterministically apply an update, and

increase the counter by one.

Theorem 3 Reachability in asynchronous BNs is

PSPACE-complete.

5 Synchronism sensitivity

For some BN or RPN, changing the update/firing policy

(from synchronous to asynchronous) may have little impact

on the reachable states. For others, it may render configu-

rations reachable, or exclude previously feasible paths. We

say that a network of the latter category is synchronism

sensitive. The authors of Noual and Sené (2017) have

analyzed this sensitivity in BNs; in this section, we perform

an analogous analysis for RPNs. As we will show, the

characterization of synchronism sensitivity in safe RPNs

boils down to the existence of preemption cycles, defined

below, among the transitions that are enabled in a given

marking. Moreover, we show that when instantiated on

RPNs encoding of BNs (according to Sect. 4.1), the gen-

eral characterization of synchronism sensitivity in RPNs

allows to recover the results of synchronism sensitivity in

BNs with respect to their influence graph (Noual and Sené

2017), with a slight generalization relaxing the local

monotonicity constraints of BNs.
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5.1 Synchronism sensitivity in BNs

Following (Noual and Sené 2017), given a BN f of

dimension n where, 8i 2 f1; . . .; ng, fi is monotonoic, a

positive (resp. negative) edge (j, i) of its influence graph

G(f) is frustrated in a configuration x 2 Bn iff xi 6¼ xj (resp.

xi ¼ xj). A (directed) cycle in G(f) is critical in x iff all its

edges are frustrated.

Then, the synchronism sensitivity in BNs can be char-

acterized with respect to their influence graphs as follows.

Lemma 3 (Noual and Sené (2017), Prop. 1) A critical

cycle must be NOPE: negative with odd length or positive

with even length.

Theorem 4 (Noual and Sené (2017)) Synchronism-sensi-

tivity, i.e., the presence of some synchronous transition that

cannot be sequentialized, in a locally monotonic BN f re-

quires the existence of a critical cycle, and thus of a

NOPE-cycle in its influence graph G(f).

5.2 Synchronism sensitivity in RPNs

Given any safe RPN N ¼ ðP; T ; pre; cont; post;M0Þ, call a
pair ðs;MÞ 2 2T � 2P such that s is s-enabled but not a-

enabled in M a witness of synchronism sensitivity or, fol-

lowing (Noual and Sené 2017), normal.

As in Baldan et al. (2001), we say for any two transi-

tions t1; t2 2 T that t1 preempts1 t2, written t1,t2 iff the

context of t2 intersects the preset of t1:

t1,t2()
D �t1 \ t2:

Theorem 5 Let ðs;MÞ 2 2T � 2P such that M s-enables s.

1. If s ¼ ft1; . . .; tng is a preemption cycle, i.e.,

t1,t2,. . .tn�1,tn;

then ðs;MÞ is normal.
2. Conversely, if ðs;MÞ is normal, then s contains a

preemption cycle.

Proof Part 1 follows immediately from the assumptions.

For Part 2, take any transition t1 2 s. If there is no place

p 2 t such that p 2 �t2 for some t2 2 s, remove t1 from s
and start over. Otherwise, we have t2,t1, and inspect ð�t2Þ
as above. Since jsj ¼ n, this process terminates after at

most n steps, yielding either a decomposition of s, or a

preemption chain of length at most n, or a preemption cycle

of length at most n. Only the last case corresponds to s
being normal. h

As an immediate consequence, we note the following

minimality result:

Corollary 2 Let s be such that ðs;MÞ is normal, but every
; � s0 � s (with proper inclusions) is a-enabled, i.e.,

ðs0;MÞ is not normal. Then s is a minimal preemption

cycle.

In Fig. 6, s ¼ f1#; 2#; 3#g illustrates a preemption cycle,

which is also normal in the marking shown; s0 ¼ f1"; 2"
; 3"g is another preemption cycle which is not enabled, but

would become enabled after firing s. In Fig. 7, s00 ¼ f1"
; 2#g is a preemption cycle, which is normal in the marking

shown.

5.3 Application to RPNs encoding BNs

We now study how the characterization of synchronism

sensitivity carries over to RPNs which encode BNs fol-

lowing the transformation described in Sect. 4.1. Remem-

ber that in this setting, each transition t of the RPN satisify
�t ¼ fpg and t� ¼ fpg with varðpÞ ¼ varðpÞ and

valðpÞ þ valðpÞ ¼ 1. Thus, t corresponds either to an up-

transition upðvarðpÞÞ iff valðpÞ ¼ 0 (i.e., valðpÞ ¼ 1), or to

a down-transition dwðvarðpÞÞ iff valðpÞ ¼ 1 (i.e.,

valðpÞ ¼ 0).

Let us assume that the contexts of transitions are mini-

mal, i.e., the DNF being the disjunction of all the context of

all the up- (resp. down-) transitions of a node is minimal.

Given an up-transition t ¼ upðviÞ (resp. a down-transition

t ¼ dwðviÞ) of a node vi, each place p 2 t corresponds to a

node vj with varðpÞ ¼ vj. Then, the sign of the influence

from vj to vi is positive if valðpÞ ¼ 1 (resp. valðpÞ ¼ 0) and

negative otherwise.

Consider a preemption cycle t1,. . .,tn,t1, and any

arc ðti; tiþ1Þ, identifying i ¼ 1 and i ¼ nþ 1 in this cycle.

1 for readers familiar with Baldan et al. (2001): we will only need

this immediate preemption relation , here, not the full asymmetric

conflict obtained by adding causal precedence

•
11

10

20

•
21

30•31

1↑1↓

2↓2↑

3↓

3↑

Fig. 6 A translation of the BN hf1ðxÞ ¼ :x3; f2ðxÞ ¼ :x1;:f3ðxÞi ¼
x3 and the configuration 111 into RPN. The step s ¼ f1#; 2#; 3#g is

normal and reflects the negative-odd cycle of the BN
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By definition, there exists a place p 2 P with varðpÞ ¼
vj ¼ varðtiÞ such that fpg ¼ �ti \ tiþ1, and a place q 2 P

with varðqÞ ¼ vk ¼ varðtiþ1Þ and fqg ¼ �tiþ1. If ti ¼
upðvjÞ (i.e., valðpÞ ¼ 0), and tiþ1 ¼ dwðvkÞ (i.e,

valðqÞ ¼ 1), we say that the type of ðti; tiþ1) is 0� 1,

written ½%
, and witnesses a positive influence of varðtiÞ on
varðtiþ1Þ. Similarly, if ti ¼ dwðvjÞ and tiþ1 ¼ upðvkÞ, the
type of ðti; tiþ1Þ is 1� 0, written ½&
, witnessing a positive

influence of varðtiÞ on varðtiþ1Þ; if ti ¼ upðvjÞ and

tiþ1 ¼ upðvkÞ, the type of ðti; tiþ1Þ is 0� 0, written ½+
,
witnessing a negative influence of varðtiÞ on varðtiþ1Þ; and
if ti ¼ dwðvjÞ and tiþ1 ¼ dwðvkÞ, the type of ðti; tiþ1Þ is

1� 1, written ½*
, witnessing a negative influence of

varðtiÞ on varðtiþ1Þ.
As a consequence, in any preemption cycle, the number

of type ½%
 arcs and of type ½&
 arcs must be equal, while

nothing can be said in general about the number of ½+
 and
½*
 arcs. Since ½+
 and ½*
 correspond to arcs with

negative signs in the BN’s influence graph, adding them in

a cycle does not change the cycle’s NOPE status (it only

changes from negative-odd to positive-even, or vice versa).

Lemma 4 Let ft1; . . .; tng be a preemption cycle in s. Then
the product of the signs of associated arcs ðti; tiþ1Þ for

i 2 f1; . . .; n� 1g and ðtn; t1Þ is positive iff n is even.

Proof By construction, the types of adjacent arcs have to

match: type ½%
 and type ½*
 arcs can only be followed by

½&
 or ½*
, and analogously, types ½+
 and ½&
 need a

successor arc of type ½%
 or ½+
. Hence the word w 2
f½+
; ½%
; ½&
½*
g� associated to the preemption cycle

must not contain the infixes ½+
½&
, ½%
½%
, ½%
½+
,
½&
½&
, ½&
½*
 or ½*
½%
, and not even ½+
½*
 or

½*
½+
. Since w also has to be cyclic, this implies that

1. between any occurrences of ½+
 and ½*
 (½*
 and

½+
), at least one occurrence of ½%
 (½&
) is required;
2. between any two occurrences of ½%
 (½&
), at least one

occurrence of ½&
 (½%
) is required;

therefore jwj½%
 ¼ jwj½&
, which in turn implies the

result. h

Example 1 The preemption cycle s ¼ f1#; 2#; 3#g in

Fig. 6 is of type ½*
½*
½*
, that of s0 ¼ f1"; 2"; 3"g of

type ½+
½+
½+
; the preemption cycle s00 ¼ f1"; 2#g in

Fig. 7 is of type ½%
½&
.

6 Encoding the interval semantics
with boolean networks

In this section, we show how the interval semantics for

RPNs (Sect. 3.3.3) can be modelled using BNs with

asynchronous updating. The resulting BNs subsume the

generalized asynchronous updating mode, and enable new

reachable configurations, while preserving important

dynamical and structural (influence graph) properties.

The interval semantics relies on decomposing the firing

of transitions in two stages: a first stage checks the pre-

conditions and commits the transition, and a second stage

eventually applies the transition (consuming and producing

tokens). Because of this decomposition, the interval

semantics adds the possibility to trigger transitions which

become enabled during the firing of other transitions.

Essentially, its application to BNs can be modelled as

follows. Each node i 2 f1; . . .; ng is decoupled in two

nodes: a ‘‘write’’ node storing the next value (2i� 1) and a

‘‘read’’ node for the current value (2i). The decoupling is

used to store an ongoing value change, while other nodes of

the system still read the current (to be changed) value of

the node. A value change is then performed according to

the automaton given in Fig. 8: assuming we start in both

write and read node with value 0, if fiðxÞ is true, then the

write node is updated to value 1. The read node is updated

in a second step, leading to the value where both write and

read nodes are 1. Then, if fiðxÞ is false, the write node is

updated first, followed, in a second stage by the update of

the read node.

•10 11 20 • 21

1↑

1↓

2↑

2↓

Fig. 7 A translation of the BN hf1ðxÞ ¼ x2; f2ðxÞ ¼ x1i and configu-

ration 01 into RPN

1 11

01

000

10

f i
(x
)

¬f i
(x
)

Fig. 8 Automaton of the value change of a node i in the interval

semantics. The states marked 0 and 1 represent the value 0 and 1 of

the node. The labels fiðxÞ and :fiðxÞ on edges are the conditions for

firing the transitions; � indicates that the transitions can be done

without condition. The states are labeled by the corresponding values

of nodes ð2i� 1Þð2iÞ in our encoding
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Once the write node (2i� 1) has changed its value, it

can no longer revert back until the read node has been

updated. Hence, if fiðxÞ becomes false in the intermediate

value 10, the read node will still go through value 1

(possibly enabling transitions) before the write node can be

updated to 0, if still applicable.

6.1 Encoding

From the automaton given in Fig. 8, one can derive Boo-

lean functions for the write (2i� 1) and read (2i) nodes. It

results in the following BN ~f , encoding the interval

semantics for the BN f:

Definition 17 (Interval semantics for Boolean networks)

Given a BN f of dimension n, ~f is a BN of dimension 2n

where 8i 2 f1; . . .; ng,
~f2i�1ðzÞ¼

D
fiðcðzÞÞ ^ ð:z2i _ z2i�1Þð Þ _ ð:z2i ^ z2i�1Þ

~f2iðzÞ¼
D
z2i�1

where cðzÞ 2 Bn is defined as cðzÞi¼
D
z2i for every

i 2 f1; . . .; ng.
Given x 2 Bn, aðxÞ 2 B2n is defined as aðxÞ2i�1 ¼

aðxÞ2i¼
D
xi for every i 2 f1; . . .; ng.

A configuration z 2 B2n is called consistent when

aðcðzÞÞ ¼ z.

The function c : B2n ! Bn maps a configuration of the

interval semantics to a configuration of the BN f by pro-

jecting on the read nodes. The function a : Bn ! B2n gives

the interval semantics configuration of a configuration of

the Boolean network f, where the read and write nodes

have a consistent value.

The correctness of our encoding is given with respect to

the interval semantics applied to the RPN translation of the

BN. It follows from the correspondence between split

transitions of the RPN and update of read and write nodes

of the encoded BN: for any Petri net transition t of the RPN

ðjf jÞ, the triggering of t� matches with the update of the

‘‘write node’’ for varðt�Þ of the BN, and the triggering of tþ
matches with the update of the ‘‘read node’’ for varðt�Þ of
the BN.

Theorem 6 Given a BN f of dimension n, for all x; y 2 Bn,

ðjxjÞ�!ðjf jÞ
istep

� ðjyjÞ () aðxÞ�!
~f

async

� aðyÞ:

6.2 Consistency

The above theorem shows that the asynchronous updating

of the BN ~f encoding the interval semantics can reproduce

any behaviour of the generalized asynchronous updating of

f. The aim of this section is to show that the interval

semantics still preserves important constraints of the BN on

its dynamics. In particular, we show the one-to-one rela-

tionship between the fixpoints of the BN and its encoding

for interval semantics; and that the influences are preserved

with their sign.

Lemma 5 states that from any configuration of encoded

BN, one can always reach a consistent configuration:

Lemma 5 (Reachability of consistent configurations) For

any z 2 B2n such that aðcðzÞÞ 6¼ z, 9y 2 Bn : z�!
~~f

async

� aðyÞ.

Proof For each i 2 f1; . . .; ng such that z2i�1 6¼ z2i, we

update the 2i node, in arbitrary order. This leads to the

configuration z0 2 B2n where 8i 2 f1; . . .; ng,
z02i ¼ z02i�1 ¼ z2i�1. Hence, by picking y ¼ cðzÞ, we obtain

z�!
~~f

async

� aðyÞ. h

The one-to-one relationship between fixpoints of f and

fixpoints of ~f is given by the following lemma:

Lemma 6 (Fixpoint equivalence) 8x 2 Bn, f ðxÞ ¼ x )
f ðaðxÞÞ ¼ aðxÞ; and 8z 2 B2n, ~f ðzÞ ¼ z ) aðcðzÞÞ ¼ z^
f ðcðzÞÞ ¼ cðzÞ.

Proof Let x 2 Bn be such that f ðxÞ ¼ x. We have that

aðxÞ2i�1 ¼ aðxÞ2i ¼ xi ¼ fiðxÞ. Hence, ~f2i�1ðaðxÞÞ ¼ fiðcða
ðxÞÞÞ ¼ fiðxÞ ¼ aðxÞ2i�1; and

~f2iðaðxÞÞ ¼ aðxÞ2i�1 ¼ aðxÞ2i.
Thus, ~f ðaðxÞÞ ¼ aðxÞ.

Let z 2 B2n be such that ~f ðzÞ ¼ z. For each i 2
f1; . . .; ng, because ~f2iðzÞ ¼ z2i, by the definition of ~f2i,

we obtain that z2i ¼ z2i�1. Thus, aðcðzÞÞ ¼ z. Moreover, as

ð:z2i _ z2i�1Þ reduces to true and ð:z2i ^ z2i�1Þ reduces to
false, ~f2i�1ðzÞ ¼ fiðcðzÞÞ ¼ z2i�1 ¼ cðzÞi. Therefore, f ðcðzÞÞ
¼ cðzÞ. h

6.3 Influence graph

As defined in Sect. 2, the influence graph provides a

summary of the causal dependencies between the value

changes of nodes of the BN. We show that our encoding of

interval semantics preserves the causal dependencies of the

original network, and in particular, preserves the cycles and

their signs.

From the definition of ~f , one can derive that all the

influences in f are preserved in ~f , and no additional influ-

ences between different variables i, j are created by the

encoding. This latter fact is addressed by the following

lemma:

Lemma 7 For any i; j 2 f1; . . .; ng, i 6¼ j, there is a pos-

itive (resp. negative) edge from j to i in G(f) if and only if
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there is a positive (resp. negative) edge from 2j to 2i� 1 in

Gð~f Þ.

Proof Let us define x; y 2 Bn such that Dðx; yÞ ¼ fjg, and
z; z0 2 B2n such that z ¼ aðxÞ and Dðz; z0Þ ¼ f2jg, i.e.,

z02j ¼ yj. Because z2i ¼ z2i�1 and, as i 6¼ j, z02i ¼ z02i�1, we

obtain that ~f2i�1ðzÞ ¼ fiðxÞ and ~f2i�1ðz0Þ ¼ fiðyÞ. h

Lemma 8 For any i 2 f1; . . .; ng,

a. there is a positive self-loop on 2i� 1 in Gð~f Þ if and

only if there exists x 2 Bn such that fiðxÞ ¼ xi;

b. there is never a negative self-loop on 2i� 1 in Gð~f Þ;
c. there is never a positive edge from 2i to 2i� 1 in Gð~f Þ;
d. there is a negative edge from 2i to 2i� 1 in Gð~f Þ if and

only if there exists x 2 Bn such that fiðxÞ 6¼ xi
e. there is always exactly one edge from 2i� 1 to 2i in

Gð~f Þ and it is positive.

Proof (a) Let us consider z; z0 2 B2n such that Dðz; z0Þ ¼
f2i� 1g with z2i�1 ¼ 0: ~f2i�1ðzÞ ¼ 0 ¼ :~f2i�1ðz0Þ ,
½ðz2i ¼ 0 ^ fiðcðzÞÞ ¼ 0Þ _ ðz2i ¼ 1 ^fiðcðzÞÞ ¼ 1Þ
 ,
fiðcðzÞÞ ¼ z2i. (b) Let us consider z; z0 2 B2n such that

Dðz; z0Þ ¼ f2i� 1g with z2i�1 ¼ 0 and ~f2i�1ðzÞ ¼ 1 ¼
:~f2i�1ðz0Þ. Thus, z2i ¼ 0, therefore, ~f2i�1ðz0Þ ¼ z02i�1 ¼ 1,

which is a contradiction. (c) Let us consider z; z0 2 B2n

such that Dðz; z0Þ ¼ f2ig with z2i ¼ 0: if z2i�1 ¼ z02i�1 ¼ 0,

then ~f2i�1ðzÞ� ~f2i�1ðz0Þ; if z2i�1 ¼ z02i�1 ¼ 1, then ~f2i�1

ðzÞ� ~f2i�1ðz0Þ; therefore there cannot be a negative edge

from 2i to 2i� 1 in Gð~f Þ. (d) 9z; z0 2 B2n: Dðz; z0Þ ¼ f2ig,
z2i ¼ 0, ~f2i�1ðzÞ ¼ 1 ¼ :~f2i�1ðz0Þ , ½ðz2i�1 ¼ z02i�1 ¼ 0 ^
fiðcðzÞÞ ¼ 1Þ _ðz2i�1 ¼ z02i�1 ¼ 1 ^ fiðcðz0ÞÞ ¼ 0Þ
 , 9x 2
Bn : fiðxÞ ¼ :xi. (e) By ~f2i definition. h

From Lemma 8, one can deduce that if there is a posi-

tive self-loop on i in G(f), then there is a positive self-loop

on 2i� 1 in Gð~f Þ; and if there is a negative self-loop on i in

G(f), then there is a negative edge from 2i to 2i� 1 in Gð~f Þ.
We can then deduce that the positive and negative

cycles of G(f) are preserved in Gð~f Þ. It is worth noting that

the encoding may also introduce negative cycles between

2i� 1 and 2i and positive self-loops on 2i� 1, for some

i 2 f1; . . .; ng.

Lemma 9 To each positive (resp. negative) cycle in G(f)

of length k[ 1, there exists a corresponding positive (resp.

negative) cycle in Gð~f Þ of length 2k. To each positive self-

loop in G(f) corresponds one positive self-loop in Gð~f Þ; to
each negative self-loop in G(f) corresponds a negative

cycle in Gð~f Þ of length 2.

Proof For cycle of length k[ 1, by Lemma 7 and by the

fact that there is a positive edge from 2i� 1 to 2i in Gð~f Þ:
each edge (i, j) in the cycle in G(f) is mapped to the string

ð2i; 2j� 1Þð2j� 1; 2jÞ, giving a cycle in Gð~f Þ of the

same sign. Correspondence of self-loops is given by

Lemma 8. h

7 Beyond generalized asynchronicity
and interval semantics

BNs are widely used to model the qualitative dynamics of

biological networks, notably of signalling and gene regu-

lation networks.

A major concern is the impact of the chosen updating

mode on the validation of the model. Indeed, it is usual to

assess the accordance of a BN with measurement data,

including time series: it is expected that the observed

behaviours can be reproduced in the abstract model. With

this perspective, the computation of reachable configura-

tions in BNs is key. For example, let us assume we observe

(in the concrete system) that a given component (e.g.,

gene) gets eventually activated: if the reachability analysis

of the BN concludes that no reachable state has this com-

ponent active, the model would likely be rejected by the

modeller.

In biological applications, the analysis of BNs merely

splits into two scientific sub-communities: the one prefer-

ring the synchronous updating mode, and the one prefer-

ring the asynchronous updating mode. The generalized

asynchronous updating, which subsumes synchronous and

asynchronous, seems a good compromise but it received

very little attention in practice. It should be noted that most

of computational tools rely only on either synchronous or

asynchronous modes, which can provide a partial

explanation.

Is the generalized asynchronous mode the ultimate

updating mode when analysing reachable configurations in

BNs for biological systems? If little is known on time and

speed features of the system and the reachability analysis

with generalized asynchronicity concludes on the absence

of the observed state, can we safely invalidate the model?

In the following motivating example (Sect. 7.1), we

show that the generalized asynchronous updating can miss

transitions, hence reachable configurations, which corre-

spond to particular, but plausible, behaviours. Thus, the

resulting analysis can be misleading on the absence of

some behaviours, notably regarding the reachability of

attractors (configurations reachable in the long-run), and

may lead to rejection of valid models. It is worth noting

that the network considered in the example is embedded in

many actual models of biological networks, e.g., (Mai and
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Liu 2009; Martı́nez-Sosa and Mendoza 2013; Traynard

et al. 2016).

As introduced in Sect. 3, the interval semantics of RPNs

takes advantage of the fine-grained specification of

causality of transitions to enable new behaviours, i.e., new

reachable states, which can be caused by specific ordering

and duration of updates. We show in Sect. 7.2 that using

the encoding of BNs into RPNs provided in Sect. 4.1 and

applying the interval semantics correctly recovers the

missing reachable configurations in our motivating

example.

Finally, in Sect. 7.3 we explore further extensions of the

interval semantics resulting in correct over-approximation

of the configurations reachable by any multi-valued

refinement of the BN.

7.1 Motivating example

Let us consider the BN defined in Fig. 2. The BN and its

influence graph suggest that the activity of species 3

increases when 1 is inactive and 2 is active. In any scenario

starting from 000 where 3 eventually increases, 2 has to

increase to trigger the increase of 3. Hence, according to

the generalized asynchronous updating represented in

Fig. 2c, the only transition which represents an increase of

3 is 010 ! 011. After this, no transition is possible.

But, assuming the BN abstracts continuous evolution of

activities, the following scenario, pictured in Fig. 9,

becomes possible: initially, the inactivity of species 1

causes an increase of the activity of species 2, represented

in plain line on the figure. Symmetrically, the absence of

species 2 causes an increase of the activities of species 1

(dashed line). This corresponds to the evolution described

by the arrow 000 ! 110 in Fig. 2b and leads to a (tran-

sient) configuration where species 1 and 2 are present.

Assume that 1 and 2 activity increase slowly. After

some time, however, the activity of 2 becomes sufficient

for influencing positively the activity of 3, while there is

still too little of species 1 for influencing negatively the

activity of 3. Species 3 can then increase. In the scenario

represented in the figure, 3 (dotted line) increases quickly,

and then 1 and 2 continue to increase. In summary, the

activity of species 3 increased from 0 to 1 during the

increase of 1 and 2, which was not predicted by the gen-

eralized asynchronous updating (Fig. 2b).

One could argue that in this case, one should better

consider more fine-grained models, for instance by allow-

ing more than binary values on nodes in order to reflect the

different activation thresholds. However, the definition of

the refined models would require additional parameters

(the different activation thresholds) which are unknown in

general. Our goal is to allow capturing these behaviours

already in the Boolean abstraction, so that any refinement

would remove possible transitions, and not create new

ones.

7.2 Application of the interval semantics of RPNs

Let us consider the BN f in Fig. 2 and its RPN encoding

ðjf jÞ in Fig. 5. Starting from the marking ðj000jÞ, 1"� 2"�
2"þ 3"� 3"þ 1"þ is a complete i-run (Definition 14) of the

interval semantics, and leads to the marking ðj111jÞ.
Similarly, let us consider the encoding of the interval

semantics in the BN ~f , as defined in Sect. 6. We obtain the

following possible sequence of fully asynchronous updates

of ~f :

00 00 00�!
~f

async
10 00 00�!

~f

async
10 10 00�!

~f

async
10 11 00

�!
~f

async
10 11 10�!

~f

async
10 11 11�!

~f

async
11 11 11

Therefore, with the interval semantics, the configuration

111 of f is reachable from 000, contrary to the generalized

asynchronous semantics. This is due to the decoupling of

the update of node 1: the activation of 1 is delayed which

allows activating node 3 beforehand.

7.3 Beyond the interval semantics

With the interval semantics, during the interleaving of

transitions, the nodes have access only to the before-update

value of other nodes. Moreover, the interval semantics

enforces the update application: once an update is triggered

(write node gets a different value than the read node), no

further update on the same node is possible until the update

has been applied. Thus, if for instance the update triggers a

change of value from 0 to 1, the interval semantics guar-

antees that the read node will eventually have the value 1.

In terms of modeling, the restriction to before-update

values in our interval semantics can be seen as an asym-

metry in the consideration of transitions: the resource

modified by the transition is still available during the

interval of update, whereas the result is only available once

the transition finished. When modelling biological systems,

0 time

activity
1

species 2
species 1
species 3

Fig. 9 A possible evolution of the activity of species modelled by the

BN of Fig. 2 (species 1 in dashed line, species 2 plain, species 3

dotted)
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it translates into considering only species which are slow to

reach their activity threshold.

Actually, the choice of whether the before-update, after-

update or both values are available during the update may

be done according to the knowledge of the modeled sys-

tem. Our construction in Sect. 6 can easily be adapted for

giving access, depending on the node, to the after-update

value instead of the before-update value. For instance, if

the node j should follow closely value changes of node i,

then node j should access the after-update value (write

node) of i, whereas, as in our motivating example, if i is

slow to update compared to j, node j should access the

before-update value (read node) of i.

7.3.1 Most permissive fully asynchronous semantics
for boolean networks

Finally, we consider here a more permissive symmetric

version which would allow the access of both before-up-

date and after-update values and do not enforce update

application. This choice may be very reasonable when not

much is known about the system, for instance about the

relative speed of the nodes.

This leads us to define a most permissive fully asyn-

chronous semantics for BNs which is defined as a 3-valued

semantics in order to represent non instantaneous updates:

a component in a configuration can now have value 1
2
, in

addition to the usual 0 and 1, and the updates are done in

two stages: if the network is in a configuration x where for

some i, fiðxÞ 6¼ xi, the update of xi will be in two stages,

going through an intermediate configuration y with yi ¼ 1
2
.

In this intermediate configuration y, other updates can

occur before the completion of the update of node i, and

they will be allowed to use either the value 0 or 1 for node

i. In the end, for a 3-valued configuration x 2 f0; 1
2
; 1gn, we

allow all the intermediate values to be approximated either

as 0 or as 1. The possible approximations are defined as the

set ApproxðxÞ of Boolean configurations x0 2 Bn such that,

for every i 2 f1; . . .; ng,

• x0i ¼ 0 if xi ¼ 0,

• x0i ¼ 1 if xi ¼ 1,

• otherwise x0i can be either 0 or 1.

Definition 18 (Most permissive fully asynchronous

semantics for Boolean networks) Given a BN f, the binary

irreflexive relation �!f
mpa

� f0; 1
2
; 1gn � f0; 1

2
; 1gn is defined

as:

x�!f
mpa

y()
D

9i 2 f1; . . .; ng; x0 2 ApproxðxÞ : Dðx; yÞ ¼ fig

^ yi ¼
fiðx0Þ if xi ¼

1

2
1

2
otherwise ðxi 6¼ fiðx0ÞÞ:

8
><

>:

We write �!f
mpa

� for the transitive closure of �!f
mpa

.

Similarly to the BN encoding of interval semantics

presented in Sect. 6, the most permissive fully asyn-

chronous semantics of a BN f of dimension n can be

encoded as an asynchronous BN
~~f of dimension 3n where

each node i 2 f1; . . .; ng is decoupled into an after-update

value node ð2i� 1Þ and a before-update value node (2i).

As in Definition 17, the updating of this latter node consists

in copying the after-update value node:
~~f 2iðzÞ¼

D
z2i�1. The

definition of
~~f 2i�1 is a bit more complex as one has to

rewrite fiðxÞ to use (non-deterministically) either the

before-update or after-update value of input nodes. This

non-deterministic choice can be encoded using extra ‘‘coin

flip’’ nodes ð2nþ jÞ for j 2 f1; . . .; ng with
~~f 2nþjðzÞ¼

D:
z2nþj. Then, assuming fiðxÞ is specified using propositional

logic, the literals xj appearing in fiðxÞ are replaced with

~~xj¼D ðz2nþj _ z2jÞ ^ ð:z2nþj _ z2j�1Þ. Also, contrary to the

interval semantics, the most permissive fully asynchronous

semantics does not enforce the update application. Thus,
~~f 2i�1ðzÞ¼

D ½fiðxÞ
½~~xj=xj;j2f1;...;ng
ðzÞ.

7.3.2 Most permissive fully asynchronous semantics
simulates any multivalued refinement

Multivalued networks are generalization of BNs where the

nodes xi can take values other than f0; 1g. Let us denote the
possible values as M¼D f0; 1

m
; . . .; m�1

m
; 1g for some integer

m. For simplicity in notations, we assume the same number

of values for all the nodes. A configuration is now a vector

x 2 Mn. Given two configurations x; y 2 Mn, the compo-

nents that differ are noted Dðx; yÞ¼D fi 2 f1; . . .; ng j
xi 6¼ yig.

In practical modelling applications, multivalued net-

works enable considering different thresholds for the

interactions from one component to its regulators: for

instance, the activation of a second component may require

the first component to be only slightly active (1
m
), whereas

the activation of a third component may require the full

activation (1) of this first one.

Hence, multivalued networks can be considered as

refinements of BNs, where in addition to the logic of

interactions, one can mix different thresholds to consider a
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component active or inactive. This fined-grained specifi-

cation requires more information on the system, and it is

then natural to aim at performing analyses at a more

abstract level (BN) and then transfering the results to

possible multivalued concretisations of the model.

In this section, we show that the most permissive fully

asynchronous semantics enables such a reasoning for

reachability properties: essentially, this semantics captures

any behaviour possible in any multivalued refinement of

the BN with asynchronous updating. Therefore, if a con-

figuration is not reachable in the most permissive fully

asynchronous semantics, there exists no multivalued

refinement for which the configuration become reachable

with asynchronous updating.

We illustrate this result with Examples 2 and 3 at the

end of the section. Notably, the last one shows an example

where both generalized asynchronous updating and interval

semantics of a BN fail to capture behaviours which are

actually possible in a multivalued refinement of it; these

behaviours are correctly preserved by the most permissive

fully asynchronous semantics.

From a specification point of view, multivalued net-

works can be defined similarly to BNs, except that the

functions now map the configurations to either ‘‘"’’ (in-

crease the value of component by 1
m
), ‘‘-’’ (do not change

the value of component), or ‘‘#’’ (decrease the value of

component by 1
m
).

Definition 21 formalizes the notion of multivalued

refinement: a multivalued network F refines a BN f if, for

every component i 2 f1; . . .; ng, for each multivalued

configuration x, if FiðxÞ leads to an increase (resp.

decrease) of the value of i, there is a binarization x0 2 Bn of

x such that fiðx0Þ ¼ 1 (resp. fiðx0Þ ¼ 0). Here, the bina-

rization allows to map non-binary values to either 0 or 1.

Theorem 7 states that, given a BN f, any fully asyn-

chronous transition of any multivalued refinement F of f is

captured by the most permissive fully asynchronous

semantics, possibly by the mean of several intermediate

transitions.

Definition 19 (Multivalued network) A multivalued net-

work of dimension n over a value range M ¼
f0; 1

m
; . . .; m�1

m
; 1g is a collection of functions F ¼

hF1; . . .;Fni where 8i 2 f1; . . .; ng;Fi : M
n ! f";�; #g.

Definition 20 (Asynchronous updating in multivalued

networks) Given a multivalued network F, the binary

irreflexive relation �!F
async

� Mn �Mn is defined as:

x�!F
async

y()
D

9i 2 f1; . . .; ng : Dðx; yÞ ¼ fig

^ yi ¼
minf0; xi �

1

m
g if FiðxÞ ¼ #

maxf1; xi þ
1

m
g if FiðxÞ ¼ ":

8
><

>:

We write �!F
async

� for the transitive closure of �!F
async

.

We now define a notion of multivalued refinement of a

BN, which formalizes the intuition that the moves defined

by the multivalued network are compatible with those of

the BN.

Definition 21 (Multivalued refinement) A multivalued

network F of dimension n over a value range M ¼
f0; 1

m
; . . .; m�1

m
; 1g refines a BN f of equal dimension n iff

for every configuration x 2 Mn and every i 2 f1; . . .; ng:

• FiðxÞ ¼ ")9x0 2 ApproxðxÞ : fiðx0Þ ¼ 1

• FiðxÞ ¼ #)9x0 2 ApproxðxÞ : fiðx0Þ ¼ 0

where Approx is generalized to multi-valued networks by

ApproxðxÞ¼DApproxðabstrðxÞÞ with abstr : Mn !
f0; 1

2
; 1gn mapping every configuration of the multivalued

network into a 3-valued configuration, which is defined for

every i 2 f1; . . .; ng as:

• abstrðxÞi¼
D
0 if xi ¼ 0,

• abstrðxÞi¼
D
1 if xi ¼ 1,

• abstrðxÞi¼
D 1

2
otherwise.

Theorem 7 (Most permissive fully asynchronous seman-

tics simulates any multivalued refinement) Let f be a BN of

dimension n and F a multivalued refinement of f . Then

8x; y 2 Mn; x�!F
async

y)abstrðxÞ�!f
mpa

� abstrðyÞ :

Proof We assume first that m[ 1. By definition of �!F
async

for multivalued networks, there exists a unique i such that

Dðx; yÞ ¼ fig. Then we have to study the different cases

determined by the value of xi and of FiðxÞ.
The first case is 0\xi\ m�1

m
and FiðxÞ ¼ ". It implies

yi ¼ xi þ 1
m
, and we observe that, in this case,

abstrðxÞ ¼ abstrðyÞ. Then trivially abstrðxÞ�!f
mpa

� abstrðyÞ.

The case of 1
m
\xi\1 and FiðxÞ ¼ # is symmetric.

The other cases are all similar; consider for instance

xi ¼ 0 and FiðxÞ ¼ ", which imposes yi ¼ 1
m
. Notice first

that DðabstrðxÞ; abstrðyÞÞ ¼ fig and abstrðxÞi ¼ 0 and

abstrðyÞi ¼ 1
2
. Now, since F is a multivalued refinement

of f , then by Definition 21, there exists an x0 2
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ApproxðxÞ ¼ ApproxðabstrðxÞÞ such that fiðx0Þ ¼ 1. Thus,

we get abstrðxÞ�!f
mpa

abstrðyÞ. The case when xi ¼ 1 and

FiðxÞ ¼ # is similar. Regarding the case when yi ¼ 1 and

FiðxÞ ¼ ", note that abstrðxÞi ¼ 1
2
and abstrðyÞi ¼ 1 and

that there exists an x0 2 ApproxðxÞ ¼ ApproxðabstrðxÞÞ
such that fiðx0Þ ¼ 1. Thus, abstrðxÞ�!f

mpa
abstrðyÞ. The case

when yi ¼ 0 and FiðyÞ ¼ # is similar.

Finally, for m ¼ 1, consider the case where xi ¼ 0 and

FiðxÞ ¼ ", which imposes yi ¼ 1. Now abstrðxÞ ¼ x and

abstrðyÞ ¼ y. In the most permissive fully asynchronous

semantics, we have x�!f
mpa

z�!f
mpa

y with an intermediate state z

defined by Dðx; zÞ ¼ fig and zi ¼ 1
2
. The transition z�!f

mpa
y is

allowed because x 2 ApproxðzÞ. h

Example 2 The scenario pictured in Fig. 9 can be obtained

as a behaviour of a 3-level refinement F of the BN f in

Fig. 2, with the following update functions:

F1ðxÞ¼D " if x2\1 else #

F2ðxÞ¼
D " if x1\1 else #

F3ðxÞ¼D " if x1 

1

2
^ x2 �

1

2
else #

We get 000�!f
async

01
2
0�!f
async

1
2
1
2
0�!F
async

1
2
1
2
1
2
�!f
async

1
2
1
2
1. . . .

In particular, imagine that a fourth species would

activate when x1, x2 and x3 are all � 1
2
, then even the

generalized asynchronous updating mode would not cap-

ture its activation, contrary to our interval semantics for

BNs.

Example 3 Let us consider the BN f of dimension 3

defined as follows:

f1ðxÞ¼D 1

f2ðxÞ¼
D
x1

f3ðxÞ¼
D
x2 ^ :x1

Starting from configuration 000 the generalized asyn-

chronous mode allows only the following transitions

000�!f
gen

100�!f
gen

110, where 110 is a fixpoint of f. The

interval semantics lead to a very similar behaviour, with

the following unique sequence of asynchronous transitions

of the BN encoding of the interval semantics:

00 00 00�!
~f

async
10 00 00�!

~f

async
11 00 00�!

~f

async
11 10 00�!

~f

async
11 11 00

Indeed, in order to activate species 2, 1 has to be activated

first as in the interval semantics species 2 only has access to

the before-update value of 1. Then, once species 1 is active,

it is impossible to activate species 3.

Now, let us consider the following 3-level refinement F

of the BN f:

F1ðxÞ¼
D "

F2ðxÞ¼
D " if x1 �

1

2
else #

F3ðxÞ¼D " if x2 �
1

2
^ x1 


1

2
else #

The following asynchronous transitions are possible from

configuration 000:

000�!F
async

1

2
00�!F

async

1

2

1

2
0�!F
async

1

2

1

2

1

2

. These transitions are also transitions of the most per-

missive fully asynchronous semantics of f, �!f
mpa

. Essentially,

as in this semantics species can have access to either the

before-update or after-update value of other species, spe-

cies 2 can be activated by reading the after-update value of

1, while species 3 can be activated by reading the before-

update value of 1. An example of possible sequence of

asynchronous transitions of the BN encoding of the most

permissive fully asynchronous semantics is the following:

00 00 00�!
~~f

async
10 00 00�!

~~f

async
10 10 00�!

~~f

async
10 11 00

�!
~~f

async
10 11 10�!

~~f

async
10 11 11

As in the previous example, let us consider a fourth species

activated when x1, x2, and x3 are all greater or equal than
1
2
:

such an activation is captured neither by the generalized

asynchronous updating nor by the interval semantics of the

abstract BN f, whereas it is captured by its most permissive

fully asynchronous semantics.

8 Discussion

With this paper, we detailed the link between Boolean

Networks (BNs) and Read (or contextual) Petri Nets

(RPNs) by focusing on the analysis of concurrency enabled

by the latter framework. On the one hand, BNs have

prominent structural properties between the components

and their evolution, while on the other hand RPNs bring a

fine-grained specification of the causality and effect of

transitions. We show how we can take benefit of both

approaches to first bring new updating modes to BNs by

encoding RPN semantics, and, secondly, propose further

extensions of these semantics aiming at obtaining correct

Boolean abstractions of discrete dynamical systems.
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To sum up, the contributions of this paper include:

• The encoding of BNs into RPNs, similar to other

encodings already existing in the literature, here

specialized for Read Petri nets;

• The encoding of RPNs into BNs, which allows a brief

proof by reduction of the PSPACE-completeness of the

reachability decision in asynchronous BNs;

• A generic characterization of synchronism sensitivity in

RPNs, which when instantiated to BN translations,

allows to recover a recent result in BNs;

• The encoding of the interval semantics of RPNs as

asynchronous BNs, enabling new behaviours missed by

usual BN updating modes;

• An extension of the interval semantics for BNs which

guarantees to include the behaviour of any multivalued

refinement.

For practical applications, the thorough link between BNs

and Petri nets enables the use of conceptual tools based on

causality and concurrency, such as unfoldings offering

more compact representation of behaviours (Esparza and

Heljanko 2008; Baldan et al. 2012; Chatain and Paulevé

2017; Kolčák et al. 2018) and for which efficient software

tools have been developed for safe PNs (Schwoon 2014)

and RPNs (Rodrı́guez and Schwoon 2013). For example,

Chatain et al. (2014), Chatain and Paulevé (2017) show the

applicability of unfoldings to analyse reachable states and

attractors in BNs with biological use cases having up to 88

components.

The transitions enabled by the interval and most per-

missive semantics are due to nodes which update at dif-

ferent time scales. For instance with the interval semantics,

whenever committed to a value change, in the meantime of

the update application, the other nodes of the network still

evolve subject to its before-update value. This time scale

consideration brings an interesting feature when modeling

biological networks which gathers processes of different

nature and velocity. Our encodings can be applied only to a

subset of nodes, offering a flexible modelling approach.

Moreover, because the encodings rely on asynchronous

BNs, they can be implemented using any software tools

supporting the asynchronous updating mode.

The introduction of the most permissive fully asyn-

chronous semantics for BNs motivates future work to

determine if it offers the smallest abstraction of any mul-

tivalued refinement (i.e., to any transition of the most

permissive semantics corresponds an asynchronous transi-

tion of a multivalued refinement), and to assess the com-

plexity of reachability decision. Finally, further work may

explore links between BNs and RPNs with real-time

semantics (Balaguer et al. 2012), aiming at tightening

connections between the two hybrid frameworks.
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abstraction and unfolding semantics of discrete regulatory net-

works. Theor Comput Sci. https://doi.org/10.1016/j.tcs.2018.03.009

Mai Z, Liu H (2009) Boolean network-based analysis of the apoptosis

network: irreversible apoptosis and stable surviving. J Theor

Biol 259(4):760–769. https://doi.org/10.1016/j.jtbi.2009.04.024

Martı́nez-Sosa P, Mendoza L (2013) The regulatory network that

controls the differentiation of t lymphocytes. Biosystems 113(2):

96–103. https://doi.org/10.1016/j.biosystems.2013.05.007
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