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This paper formulates new methods for reactive program synthesis
that are fundamentally modular in nature. That helps overcome
state explosion which otherwise severely limits scalability.

The goal is to synthesize a multi-process reactive program from
a temporal specification of its behavior. A key result by Pnueli and
Rosner [11] shows that whether such a program exists is undecid-
able even if the individual processes are finite-state. On the other
hand, the question is semi-decidable: one can systematically enu-
merate programs and use model checking to analyze each candidate.
The drawback, however, is an exponential blowup in enumeration (a
process with 𝑘 states has 𝑂 (2𝑘2 ) choices for its transition relation),
coupled with state explosion during model checking. Finkbeiner
and Schewe [13] avoid explicit enumeration by encoding the entire
synthesis question as a Boolean satisfiability query. This encoding
is based on the global state space and therefore results in queries
with exponentially many variables and constraints in 𝑁 , the number
of processes, severely limiting scalability. Our experiments show
that this state explosion limits synthesis to a 7-process instance of
a mutual exclusion protocol.

In a classic paper [5], Dijkstra shows how to ‘invert’ Hoare’s
proof system for program verification into a systematic method
for program construction. This insight can be generalized to the
principle that any proof system for verification can be inverted into a
method for program synthesis. We propose to invert proof systems
for modular reasoning and symmetry reduction into synthesis pro-
cedures which, by design, avoid state explosion. In the modular
synthesis method, the number of variables and constraints in the
SAT query grows only polynomially in 𝑁 . Combined with symme-
try restrictions, the method synthesizes a 42-process instance of a
token-passing mutual exclusion protocol about 17 minutes.

There is a rich collection of proof systems in the literature, cover-
ing a variety of program models and specification logics. We focus
here on synthesizing finite state programs in a standard shared
memory model. Specifications are given as linear-time temporal
logic properties.

The intuition is that one is progressively tightening the space
of candidate programs and their correctness proofs. Non-modular
synthesis searches over all programs and all proofs. Modular syn-
thesis limits the search to modular proofs. Symmetry constraints
restrict the space of candidate programs, requiring them to be iso-
morphic. Beyond improvements in scalability, the restrictions also
result in programs that are closer to those constructed by hand, as
hand-crafted protocols are typically symmetric and loosely coupled.

1 BACKGROUND
We begin by outlining general principles that turn a verification
proof system into a synthesis method. Consider the problem of
verifying that a transition system𝑀 = (𝑆, 𝐼 ,𝑇 ,𝐴𝑃, _) (state space 𝑆 ,
initial states 𝐼 , transition relation 𝑇 ⊆ 𝑆 × 𝑆 , atomic proposition set
𝐴𝑃 , labeling function _ : 𝑆 → 2𝐴𝑃 ) satisfies a temporal property

whose negation is defined as a Büchi automaton𝐴 = (𝑄,𝑞, 2𝐴𝑃 , 𝛿, 𝐹 )
(automaton states𝑄 , initial state 𝑞, alphabet 2𝐴𝑃 , transition relation
𝛿 and accepting set 𝐹 ).

As is well known (cf. [7]), one needs an invariant \ ⊆ 𝑆 ×𝑄 and
a partial function rank : 𝑆 × 𝑄 → (𝑊, ≺) (where the range is a
well-founded set such as (Nat, <)), with the following properties:

• (definedness) rank is defined for all pairs in \ ,
• (initiality) \ (𝑠, 𝑞) holds for all initial states 𝑠 ,
• (inductiveness) if \ (𝑠, 𝑞) and 𝑇 (𝑠, 𝑠 ′) and 𝛿 (𝑞, _(𝑠), 𝑞′) then
\ (𝑠 ′, 𝑞′) holds,

• (rank decrease) if \ (𝑠, 𝑞) and 𝑇 (𝑠, 𝑠 ′) and 𝛿 (𝑞, _(𝑠), 𝑞′) then
rank(𝑠 ′, 𝑞′) ⪯𝑞 rank(𝑠, 𝑞). Here, ⪯𝑞 is ≺ if 𝑞 ∈ 𝐹 and is ⪯
otherwise.

It is easy to see that if these conditions hold, there is no com-
putation of𝑀 that is accepted by 𝐴. Consider any computation of
𝑀 on which there is an accepting run of 𝐴. Every pair (𝑠, 𝑞) along
the run satisfies \ by initiality and inductiveness and thus has a
rank value. By acceptance, a state in 𝐹 occurs on the run infinitely
often; by rank decrease, the induced sequence of ranks is an in-
finite strictly decreasing chain, which contradicts well-foundedness.

Non-Modular Synthesis. In [13] essentially this proof rule is turned
into a finite-state synthesis method by limiting 𝑆 to a finite set of
states (with a fixed initial state), and the rank domain to a finite
range of natural numbers. With 𝑆 and𝑊 fixed, the proof conditions
turn into Boolean constraints. The unknowns are the structural
components (the transition relation and the labeling) and the proof
components (the invariant and the rank relation). For instance, the
transition relation is represented as a set of |𝑆 |2 Boolean variables
{𝑇 (𝑠, 𝑠 ′)}, and the invariant as a set of |𝑆 | × |𝑄 | Boolean variables
{\ (𝑠, 𝑞)}. From a solution to this set of constraints (if one exists),
one can read off both the synthesized program (𝑇, 𝐼, _) and its cor-
rectness proof (\, 𝜌).

Shared-State Concurrency. We apply this method to synthesize mul-
tiprocess reactive programs. The shared state space is denoted
𝑋 . Each process 𝑀𝑖 has a local state space 𝐿𝑖 , and the structure
𝑀𝑖 = (𝑆𝑖 , 𝐼𝑖 ,𝑇𝑖 , 𝐴𝑃𝑖 , _𝑖 ), where the state space 𝑆𝑖 is 𝑋 × 𝐿𝑖 . Con-
currency is represented in the standard way as interleaving. The
combined state space for 𝑁 processes is 𝑋 × 𝑆0 × . . . × 𝑆𝑁−1, which
has size exponential in 𝑁 . This causes the non-modular SAT query
to have an exponential number of variables and constraints.

We use a simple running example of a protocol for mutually
exclusive access to a shared resource. The following requirements
are based on per-process atomic propositionsH (‘hungry’, no access
to resource) and E (‘eating’, access to resource).

(1) (Labeling) In every state, a process is either hungry or eating,
but not both.

∀𝑖 : 𝐺 ((¬H𝑖 ∧ E𝑖 ) ∨ (H𝑖 ∧ ¬E𝑖 )) (1)
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Figure 1: Growth of SAT variables and constraints with increasing 𝑁 . Note the log-linear scale.

(2) (Mutual Exclusion) There is no global state where more than
one process is eating.

∀𝑖, 𝑗 : 𝑖 ≠ 𝑗 : 𝐺 (¬E𝑖 ∨ ¬E𝑗 ) (2)

(3) (Starvation Freedom) Every hungry process is eventually
eating.

∀𝑖 : 𝐺 (H𝑖 → 𝐹 (E𝑖 )) (3)

In our experiments, a protocol with 𝑁 processes with 2 internal
states requires a rank function bounded by at least 2𝑁 . Therefore
the number of variables grows as 𝑂 (𝑁 32𝑁 ), limiting non-modular
synthesis to a 7-process protocol instance.

2 MODULAR SYNTHESIS
The modular synthesis procedure relies on a modular proof system.
Intuitively, it restricts the search space of protocols only to those
that have a modular correctness proof.

The Modular Proof System. The proof system relies on a collection
of per-process invariants {𝛾𝑖 } rather than a single global invariant.
The Owicki-Gries-style conditions (cf. [8]) defined below ensure
that (1) each assertion is inductive within its own process, and
(2) it is unaffected by ‘interference’ (i.e., changes to shared state)
resulting from the actions of other processes.

• (Initiality) 𝛾𝑖 (𝑥, 𝑙) for each (𝑥, 𝑙) ∈ 𝐼𝑖 ,
• (Local Invariance) If𝛾𝑖 (𝑥, 𝑙) and𝑇𝑖 ((𝑥, 𝑙), (𝑥 ′, 𝑙 ′)) then𝛾𝑖 (𝑥 ′, 𝑙 ′)
holds, and

• (Non-Interference) If 𝛾𝑖 (𝑥, 𝑙) and 𝛾 𝑗 (𝑥,𝑚) (for 𝑗 ≠ 𝑖) and
𝑇𝑗 ((𝑥,𝑚), (𝑥 ′,𝑚′)) then 𝛾𝑖 (𝑥 ′, 𝑙) holds.

It can be shown that the conjunction of the local invariants, 𝛾 =

( ∧ 𝑖 : 𝛾𝑖 ), is a global inductive invariant.
A local temporal property for a single process𝑀𝑖 is represented

by a Büchi automaton 𝐴𝑖 for its negation. The modular proof
method follows the standard pattern defined previously, with one
key change: a new non-interference rule checks that the invariant
and rank function are unaffected by the actions of other processes.

• rank𝑖 is defined for all pairs ((𝑥, 𝑙), 𝑞) in \𝑖 ,
• (Initiality) \𝑖 ((𝑥, 𝑙), 𝑞) holds for all (𝑥, 𝑙) ∈ 𝐼𝑖 ,

• (Local Inductiveness and Rank Relation) if \𝑖 ((𝑥, 𝑙), 𝑞) and
𝑇𝑖 ((𝑥, 𝑙), (𝑥 ′, 𝑙 ′)) and𝛿𝑖 (𝑞, _𝑖 (𝑥, 𝑙), 𝑞′) then\𝑖 ((𝑥 ′, 𝑙 ′), 𝑞′) holds,
and rank𝑖 ((𝑥 ′, 𝑙 ′), 𝑞′) ⪯𝑞 rank𝑖 ((𝑥, 𝑙), 𝑞),

• (Non-Interference) if \𝑖 ((𝑥, 𝑙), 𝑞) and 𝛾 𝑗 (𝑥,𝑚) (for 𝑗 ≠ 𝑖) and
𝑇𝑗 ((𝑥,𝑚), (𝑥 ′,𝑚′)) and 𝛿𝑖 (𝑞, _𝑖 (𝑥, 𝑙), 𝑞′) then \𝑖 ((𝑥 ′, 𝑙), 𝑞′)
holds and rank𝑖 ((𝑥 ′, 𝑙), 𝑞′) ⪯𝑞 rank𝑖 ((𝑥, 𝑙), 𝑞).

Soundness is established along the lines sketched for the general
case. It establishes that all computations of the multiprocess system
satisfy the local temporal property represented by 𝐴𝑖 .

Verification to Synthesis. We now follow the bounded synthesis
approach and limit𝑋 and each 𝐿𝑖 to a finite space and similarly limit
the rank domain𝑊 to be finite. As before, the proof constraints turn
into propositional constraints on Boolean variables representing
the components𝑇𝑖 and _𝑖 and the proof assertions 𝛾𝑖 , \𝑖 , and rank𝑖 ,
for each process index 𝑖 . Although the constraints may seem more
complex, the number of variables and constraints in the query is
polynomial in 𝑁 .

There is, of course, a catch – in fact, two. Both arise from known
limitations of modular methods. A modular method is limited to
proving local temporal properties. We give an example of manually
refining a non-local specification to a stronger localized specifica-
tion. Second, not all correct programs may have purely modular
proofs. This is remedied by adding auxiliary state and synthesizing
auxiliary transitions; we omit details. The running example does
not use them.

Refinement. We observe from the non-modular synthesized in-
stances for small 𝑁 that in the synthesized protocol, the shared
variable acts as a token that cycles through the processes, ensur-
ing mutual exclusion and starvation freedom. We now refine the
specification, making it more localized and directing the search to-
wards discovering such a protocol. In the refinement, we require the
shared variable to take on values that are process indexes, and in-
troduce a circular clockwise permutation 𝜋 defined by 𝜋 (𝑖) = (𝑖+1)
mod 𝑁 . The starvation freedom property (3) is refined to:

• A hungry process eats only if it has the token.

∀𝑖 : 𝐺 ((𝑥 = 𝑖 ∧ H𝑖 ) → 𝐹 (E𝑖 )) (4)
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Figure 2: The internal states of process 𝑖 in the synthesized
mutual exclusion protocol expressed as a finite state system
with guards. In this process, 𝑙0 has labels {hungry𝑖 ,¬eating𝑖 }
and 𝑙1 has labels {¬hungry𝑖 , eating𝑖 } and 𝑙1.

• A process always releases its token to its successor.

∀𝑖 : 𝐺 (𝑥 = 𝑖 → 𝐹 (𝑥 = 𝜋 (𝑖))) (5)

By the second property, the token must eventually reach every
hungry process, ensuring by the first property that it gets to eat.
With the refined specification, the number of variables grows only
as𝑂 (𝑁 3), a polynomial, as each local inductiveness constraint is de-
fined only for pairs of states. This growth is improvement is evident
Figure 1. Surprisingly, though, this improvement does not translate
into decreased run time. The modular method can synthesize only
up to 5 processes.

Symmetry. So far, we have restricted the shape of proofs by re-
quiring modularity and strengthened the specifications to make
them localized. We now add a structural requirement, requiring the
synthesized processes to be symmetric.

∀𝑖 : 𝑇𝑖 ((𝑥, 𝑙), (𝑥 ′, 𝑙 ′)) → 𝑇𝜋 (𝑖) ((𝜋 (𝑥), 𝑙), (𝜋 (𝑥 ′), 𝑙 ′)) (6)

Additionally, we prove that if there exists a symmetric solution,
it must admit a symmetric proof, that is, it should satisfy constraints
of the form:

∀𝑖 : \𝑖 ((𝑥, 𝑙), 𝑞) → \𝜋 (𝑖) ((𝜋 (𝑥), 𝑙), 𝑞) (7)
∀𝑖 : rank𝑖 ((𝑥, 𝑙), 𝑞) = rank𝜋 (𝑖) ((𝜋 (𝑥), 𝑙), 𝑞) (8)

The addition of constraints (6)-(8) has a dramatic effect on scal-
ability: the SAT solver synthesizes a protocol with 42 processes in
about 17 minutes. Intuitively, this is because the symmetry con-
straint collapses the search: a decision to add a 𝑇0 transition forces
the addition of symmetric transitions in all other processes.

Although symmetry reduction allows checks to be limited to a
single representative process, we observe that this does not signifi-
cantly improve performance. Notably, one needs the combination
of modularity and symmetry; symmetry alone does not work well,
as observed in Figure 3.

3 RELATEDWORK AND CONCLUSIONS
The central concept behind this work is simple and general: turn
deductive proof rules into synthesis procedures. Modularity and
symmetry have been used in synthesis, but in different settings.
In [1], modularity is used to synthesize synchronous, decoupled
multi-agent systems. Our asynchronous shared-memory model is
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Figure 3: Figure showing run-times of the four methods.

different, as are the algorithms (SAT vs. game solving). Symmetry
is used to speed up completion of partial process skeletons [2] and
example-based synthesis of sequential programs [3]. To the best
of our knowledge, prior work has not attempted to simply invert
existing modular proof rules into a synthesis procedure.

Program synthesis is not a push-button procedure. As shown
here, a protocol designer has to play an active part to convert
specifications into localized forms, and to specify the right kind of
symmetry. However, this is all at the meta-level of specifications,
raising the level at which protocol design is carried out. Ongoing
research is on whether one can build on the modular methods to
directly synthesize parametrically correct protocols.

These results build upon much prior work. We use Manna and
Pnueli’s elegant formulation [7] of automaton-based deductive
verification, and are inspired by the Dijkstra’s approach to sys-
tematic program construction [5]. We build on the ideas in [6, 13]
on bounded reactive synthesis and in particular the reduction to
Boolean satisfiability. That turns out to be a very flexible notion,
easily adapated to incorporate a variety of structural and proof con-
straints. The classical approach to reactive synthesis is via games
or tree automata [4, 10, 12] which are mathematically elegant but
appear to be quite difficult to adapt in a like manner. That is also
the case for GR(1) synthesis [9], which is based on fixed-point
constructions.

The results in this paper are only an initial exploration of the
possibilities of proof system inversion. Given the rich variety of
program models, specification logics, and accompanying deductive
proof systems, this promises to be a particularly fertile topic.
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