This paper formulates new methods for reactive program synthesis that are fundamentally modular in nature. That helps overcome state explosion which otherwise severely limits scalability.

The goal is to synthesize a multi-process reactive program from a temporal specification of its behavior. A key result by Pnueli and Rosner [11] shows that whether such a program exists is undecidable even if the individual processes are finite-state. On the other hand, the question is semi-decidable: one can systematically enumerate programs and use model checking to analyze each candidate. The drawback, however, is an exponential blowup in enumeration (a process with \(k \) states has \(O(2^k) \) choices for its transition relation), coupled with state explosion during model checking. Finkbeiner and Schewe [13] avoid explicit enumeration by encoding the entire synthesis question as a Boolean satisfiability query. This encoding is based on the global state space and therefore results in queries with exponentially many variables and constraints in \(N \), the number of processes, severely limiting scalability. Our experiments show that this state explosion limits synthesis to a 7-process instance of a mutual exclusion protocol.

In a classic paper [5], Dijkstra shows how to ‘invert’ Hoare’s proof system for program verification into a systematic method for program construction. This insight can be generalized to the principle that any proof system for verification can be inverted into a method for program synthesis. We propose to invert proof systems for modular reasoning and symmetry reduction into synthesis procedures which, by design, avoid state explosion. In the modular synthesis method, the number of variables and constraints in the SAT query grows only polynomially in \(N \). Combined with symmetry restrictions, the method synthesizes a 42-process instance of a token-passing mutual exclusion protocol about 17 minutes.

There is a rich collection of proof systems in the literature, covering a variety of program models and specification logics. We focus here on synthesizing finite state programs in a standard shared memory model. Specifications are given as linear-time temporal logic properties.

The intuition is that one is progressively tightening the space of candidate programs and their correctness proofs. Non-modular synthesis searches over all programs and all proofs. Modular synthesis limits the search to modular proofs. Symmetry constraints restrict the space of candidate programs, requiring them to be isomorphic. Beyond improvements in scalability, the restrictions also result in programs that are closer to those constructed by hand, as hand-crafted protocols are typically symmetric and loosely coupled.

1 BACKGROUND

We begin by outlining general principles that turn a verification proof system into a synthesis method. Consider the problem of verifying that a transition system \(M = (S, I, T, AP, \lambda) \) (state space \(S \), initial states \(I \), transition relation \(T \subseteq S \times S \), atomic proposition set \(AP \), labeling function \(\lambda : S \rightarrow 2^{AP} \)) satisfies a temporal property whose negation is defined as a Büchi automaton \(A = (Q, \delta, \neg \mathit{AP}, \delta, F) \) (automaton states \(Q \), initial state \(q \), alphabet \(\mathit{AP} \), transition relation \(\delta \) and accepting set \(F \)).

As is well known (cf. [7]), one needs an invariant \(\theta \subseteq S \times Q \) and a partial function rank : \(S \times Q \rightarrow (W, <) \) (where the range is a well-founded set such as \((\text{Nat}, <) \)), with the following properties:

- (definedness) rank is defined for all pairs in \(\theta \).
- (initiality) \(\theta(q, \hat{q}) \) holds for all initial states \(s \).
- (inductiveness) if \(\theta(s, q) \) and \(T(s, s') \) and \(\delta(q, \lambda(s), q') \) then \(\theta(s', q') \) holds.
- (rank decrease) if \(\theta(s, q) \) and \(T(s, s') \) and \(\delta(q, \lambda(s), q') \) then \(\text{rank}(s', q') \leq \text{rank}(s, q) \). Here, \(\leq q \) is \(< \) if \(q \in F \) and is \(\leq \) otherwise.

It is easy to see that if these conditions hold, there is no computation of \(M \) that is accepted by \(A \). Consider any computation of \(M \) on which there is an accepting run of \(A \). Every pair \((s, q)\) along the run satisfies \(\theta \) by initiality and inductiveness and thus has a rank value. By acceptance, a state in \(F \) occurs on the run infinitely often; by rank decrease, the induced sequence of ranks is an infinite strictly decreasing chain, which contradicts well-foundedness.

Non-Modular Synthesis. In [13] essentially this proof rule is turned into a finite-state synthesis method by limiting \(\theta \) to a finite set of states (with a fixed initial state), and the rank function to a finite range of natural numbers. With \(S \) and \(W \) fixed, the proof conditions turn into Boolean constraints. The unknowns are the structural components (the transition relation and the labeling) and the proof components (the invariant and the rank relation). For instance, the transition relation is represented as a set of \(|S|^2\) Boolean variables \(T(s, s') \), and the invariant as a set of \(|S| \times |Q|\) Boolean variables \(\theta(s, q) \). From a solution to this set of constraints (if one exists), one can read off both the synthesized program \((T, I, \lambda)\) and its correctness proof \((\theta, \rho)\).

Shared-State Concurrency. We apply this method to synthesize multiprocess reactive programs. The shared state space is denoted \(X \). Each process \(M_i \) has a local state space \(L_i \), and the structure \(M_i = (S_i, I_i, T_i, AP_i, \lambda_i) \), where the state space \(S_i \) is \(X \times L_i \). Concurrency is represented in the standard way as interleaving. The combined state space for \(N \) processes is \(X \times S_0 \times \ldots \times S_{N-1} \), which has size exponential in \(N \). This causes the non-modular SAT query to have an exponential number of variables and constraints.

We use a simple running example of a protocol for mutually exclusive access to a shared resource. The following requirements are based on per-process atomic propositions \(H \) (‘hungry’, no access to resource) and \(E \) (‘eating’, access to resource).

(1) (Labeling) In every state, a process is either hungry or eating, but not both.

\[\forall i : G((\neg H_i \land E_i) \lor (H_i \land \neg E_i)) \]
The Owicki-Gries-style conditions (cf. [8]) defined below ensure
the modular synthesis procedure relies on a modular proof system.

An invariant is defined for all pairs
\(((x, l), q) \) for each process index \(i \).

(2) (Mutual Exclusion) There is no global state where more than
one process is eating.

\[\forall i, j : i \neq j : G(E_i \lor \neg E_j) \] (2)

(3) (Starvation Freedom) Every hungry process is eventually
eating.

\[\forall i : G(H_i \rightarrow F(E_i)) \] (3)

In our experiments, a protocol with \(N \) processes with 2 internal
states requires a non-modular synthesis to a \(7 \)-process protocol instance.

2 MODULAR SYNTHESIS

The modular synthesis procedure relies on a modular proof system.
Intuitively, it restricts the search space of protocols only to those
that have a modular correctness proof.

The Modular Proof System. The proof system relies on a collection
of per-process invariants \(\{y_i\} \) rather than a single global invariant.
The Owicki-Gries-style conditions (cf. [8]) defined below ensure
that (1) each assertion is inductive within its own process, and
(2) it is unaffected by ‘interference’ (i.e., changes to shared state)
resulting from the actions of other processes.

- (Initiality) \(y_i(x, l) \) for each \((x, l) \in I_i \),
- (Local Invariance) If \(y_i(x, l) \) and \(T_i((x, l), (x', l')) \) then \(y_i(x', l') \)
holds, and
- (Non-Interference) If \(y_i(x, l) \) and \(y_j(x, m) \) (for \(j \neq i \)) and
\(T_j((x, m), (x', m')) \) then \(y_i(x', l) \) holds.

It can be shown that the conjunction of the local invariants, \(y = \bigwedge \{y_i\} \), is a global inductive invariant.

A local temporal property for a single process \(M_i \) is represented
by a Büchi automaton \(A_i \) for its negation. The modular proof
method follows the standard pattern defined previously, with one
key change: a new non-interference rule checks that the invariant
and rank function are unaffected by the actions of other processes.

- rank\(_i\) is defined for all pairs \(((x, l), q) \) in \(\theta_i \),
- (Initiality) \(\theta_i((x, l), \bar{q}) \) holds for all \((x, l) \in I_i \),
- (Local Inductiveness and Rank Relation) if \(\theta_i((x, l), q) \) and
\(T_i((x, l), (x', l')) \) and \(\delta_i(q, \lambda_i(x, l), q') \) then \(\theta_i((x', l'), q') \) holds, and
\(\text{rank}_i((x', l'), q') \leq \text{rank}_i((x, l), q) \).
- (Non-Interference) if \(\theta_i((x, l), q) \) and \(y_j(x, m) \) (for \(j \neq i \)) and
\(T_j((x, m), (x', m')) \) and \(\delta_j(q, \lambda_j(x, l), q') \) then \(\theta_i((x', l), q') \)
holds and \(\text{rank}_i((x', l), q') \leq \text{rank}_i((x, l), q) \).

Soundness is established along the lines sketched for the general
case. It establishes that all computations of the multiprocess system
satisfy the local temporal property represented by \(A_i \).

Verification to Synthesis. We now follow the bounded synthesis
approach and limit \(X \) and each \(L_i \) to a finite space and similarly limit
the rank domain \(W \) to be finite. As before, the proof constraints turn
into propositional constraints on Boolean variables representing
the components \(T_i \) and \(\lambda_i \) and the proof assertions \(y_i \), \(\theta_i \), and \(\text{rank}_i \),
for each process index \(i \). Although the constraints may seem more
complex, the number of variables and constraints in the query is
polynomial in \(N \).

There is, of course, a catch – in fact, two. Both arise from known
limitations of modular methods. A modular method is limited to
proving local temporal properties. We give an example of manually
refining a non-local specification to a stronger localized specification.
Second, not all correct programs may have purely modular
proofs. This is remedied by adding auxiliary state and synthesizing
auxiliary transitions; we omit details. The running example does not
use them.

Refinement. We observe from the non-modular synthesized
instances for small \(N \) that in the synthesized protocol, the shared
variable acts as a token that cycles through the processes, ensuring
mutual exclusion and starvation freedom. We now refine the
specification, making it more localized and directing the search
towards discovering such a protocol. In the refinement, we require the
shared variable to take on values that are process indexes, and
introduce a circular clockwise permutation \(\pi \) defined by \(\pi(i) = (i + 1) \mod N \). The starvation freedom property (3) is refined to:

- A hungry process eats only if it has the token.

\[\forall i : G((x = i \land H_i) \rightarrow F(E_i)) \] (4)

![Figure 1: Growth of SAT variables and constraints with increasing N. Note the log-linear scale.](image-url)
With the refined specification, the number of variables grows only with guards. In this process, l_0 has labels \{hungry, i, eating\} and l_1 has labels \{-hungry, i, eating\} and l_1.

- A process always releases its token to its successor.

$$\forall i: G(x = i \rightarrow F(x = \pi(i)))$$ \hspace{1cm} (5)

By the second property, the token must eventually reach every hungry process, ensuring by the first property that it gets to eat. With the refined specification, the number of variables grows only as $O(N^3)$, a polynomial, as each local inductiveness constraint is defined only for pairs of states. This growth is improvement is evident Figure 1. Surprisingly, though, this improvement does not translate into decreased run time. The modular method can synthesize only up to 5 processes.

Symmetry. So far, we have restricted the shape of proofs by requiring modularity and strengthened the specifications to make them localized. We now add a structural requirement, requiring the synthesized processes to be symmetric.

$$\forall i: T_i((x, l), (x', l')) \rightarrow T_{\pi(i)}((\pi(x), l), (\pi(x'), l'))$$ \hspace{1cm} (6)

Additionally, we prove that if there exists a symmetric solution, it must admit a symmetric proof, that is, it should satisfy constraints of the form:

$$\forall i: \theta_i((x, l), q) \rightarrow \theta_{\pi(i)}((\pi(x), l), q)$$ \hspace{1cm} (7)

$$\forall i: \text{rank}_i((x, l), q) = \text{rank}_{\pi(i)}((\pi(x), l), q)$$ \hspace{1cm} (8)

The addition of constraints (6)-(8) has a dramatic effect on scalability: the SAT solver synthesizes a protocol with 42 processes in about 17 minutes. Intuitively, this is because the symmetry constraint collapses the search: a decision to add a T_0 transition forces the addition of symmetric transitions in all other processes. Although symmetry reduction allows checks to be limited to a single representative process, we observe that this does not significantly improve performance. Notably, one needs the combination of modularity and symmetry; symmetry alone does not work well, as observed in Figure 3.

3 RELATED WORK AND CONCLUSIONS

The central concept behind this work is simple and general: turn deductive proof rules into synthesis procedures. Modularity and symmetry have been used in synthesis, but in different settings. In [1], modularity is used to synthesize synchronous, decoupled multi-agent systems. Our asynchronous shared-memory model is different, as are the algorithms (SAT vs. game solving). Symmetry is used to speed up completion of partial process skeletons [2] and example-based synthesis of sequential programs [3]. To the best of our knowledge, prior work has not attempted to simply invert existing modular proof rules into a synthesis procedure.

Program synthesis is not a push-button procedure. As shown here, a protocol designer has to play an active part to convert specifications into localized forms, and to specify the right kind of symmetry. However, this is all at the meta-level of specifications, raising the level at which protocol design is carried out. Ongoing research is on whether one can build on the modular methods to directly synthesize parametrically correct protocols.

These results build upon much prior work. We use Manna and Pnueli’s elegant formulation [7] of automaton-based deductive verification, and are inspired by the Dijkstra’s approach to systematic program construction [5]. We build on the ideas in [6, 13] on bounded reactive synthesis and in particular the reduction to Boolean satisfiability. That turns out to be a very flexible notion, easily adapted to incorporate a variety of structural and proof constraints. The classical approach to reactive synthesis is via games or tree automata [4, 10, 12] which are mathematically elegant but appear to be quite difficult to adapt in a like manner. That is also the case for GR(1) synthesis [9], which is based on fixed-point constructions.

The results in this paper are only an initial exploration of the possibilities of proof system inversion. Given the rich variety of program models, specification logics, and accompanying deductive proof systems, this promises to be a particularly fertile topic.

Acknowledgement: The authors were supported, in part, by NSF awards CCF-1563393 and CCF-1703791 from the National Science Foundation. Any opinions, findings, and conclusions or recommendations expressed are those of the authors and do not necessarily reflect the views of the National Science Foundation.

REFERENCES

