
Heartbleed: A Formal Methods Perspective
Aalok Thakkar

University of Pennsylvania
athakkar@cis.upenn.edu

ABSTRACT
TheHeartbleed Bug is a serious vulnerability in the popular OpenSSL
cryptographic software library caused due to a buffer overflow er-
ror. This report surveys work in the domain of formal methods
motivated by and targeted at this bug. We discuss the bug in detail,
its causes, possible attacks, and its impact and then look at two
tools, Flinder-SCA, which combines static and dynamic analysis
for detecting Heartbleed and Angelix, a semantics-based automated
repair tool which synthesizes a correct patch for the vulnerability
using a test suite. We also review methods and practices to avoid
security vulnerabilities in general, and especially those due to buffer
errors, and conclude with a discussion on possible directions for
future works.

1 INTRODUCTION
“I cannot believe it. The internet was supposed to be a lawless

frontier where all of humanity’s desires and vices merge into a
royal collective aid held in check by a barely regulated rat’s nest of
technical abstractions I don’t understand. How did that get out of
control?”

- The Colbert Report, Comedy Central, April 9, 2014

Stephen Colbert’s sarcasm was in reference to the vulnerability
namedCVE-2014-0160 [10] inOpenSSL. OpenSSL is a cryptographic
software library for applications that secure communications over
computer networks against eavesdropping or need to identify the
party at the other end. It is widely used by Internet servers, in-
cluding the majority of HTTPS websites. Versions 1.0.1 through
1.0.1f had this severe memory handling bug that could be used to
reveal the application’s memory [6]. By reading the memory of
the web server, attackers could access sensitive data, including the
server’s private key. This could allow attackers to decode earlier
eavesdropped communications if the encryption protocol used does
not ensure perfect forward secrecy. Knowledge of the private key
could also allow an attacker to mount a man-in-the-middle attack
against any future communications. The vulnerability can poten-
tially reveal unencrypted parts of other users’ sensitive requests
and responses, including session cookies, login credentials, pass-
words, and other private data which might allow attackers to steal
data directly from the services and users, and impersonate services
and users [13]. At its disclosure on April 7, 2014, around 17 % of the
Internet’s secure web servers (about half a million servers) certified
by trusted authorities were believed to have been vulnerable to the
attack [19].

It was also the first time a computer bug became a sensation on
media of every form, got a catchy logo and a name now known
to all: Heartbleed [3]. The Heartbleed vulnerability also became a
classic benchmark for network security, cryptography, and formal
methods community and a number of papers were published in

these communities that focused on the analysis, prevention, and
patching Heartbleed and similar bugs. In this report, we analyze the
impact of Heartbleed vulnerability from a formal methods perspec-
tive and discuss two tools: (1) Flinder-SCA, a combination of static
and dynamic analysis to detect vulnerabilities and (2) Angelix, a
semantic analysis based program repair tool which can synthesize
a patch for Heartbleed.

Figure 1: The Heartbleed Logo. CVE-2014-0160 was the first
computer vulnerability to have such a branding.

2 ANATOMY OF THE BUG
OpenSSL is a widely-used open-source cryptographic library that
implements the Secure Sockets Layer (SSL) and Transport Layer
Security (TLS) protocols. Their official web-page lists 176 vulnera-
bilities found in OpenSSL since 2002 [6], Heartbleed being the most
popular and impactful in the list.

Heartbleed was introduced by the Heartbeat Extension in the
OpenSSL version 1.0.11. This extension enables a low-cost, keep-
alive mechanism for peers to know that they’re still connected and
all is well at the TLS layer. Standard implementations of TLS do
not require the extension as they can rely on TCP for equivalent
session management.

The design of this extension is simple. Peers indicate support for
the extension during the initial TLS handshake. Either end-points
of the TLS connection can send a package called HeartbeatRe-
quest along with an arbitrary payload and a field that defines the
payload length2. The request should be answered by a Heartbeat-
Response package that contains an exact copy of the payload and
the sender’s own random padding. This mechanism allows for a
more streamlined checking of connection state and lowers client
or server overhead on long-lived connections.

1The extension was introduced on March 14, 2012 and the vulnerability was first
detected only in March 2014 and made public in April 2014
2the exact message includes a one-byte type field, a two-byte payload length, the
payload, and at least 16 bytes of random padding



Aalok Thakkar

Version 1.0.1 of OpenSSL added support for the Heartbeat func-
tionality and enabled it by default. This implementation of the
extension contained a vulnerability that allowed either end-point
to read data following the payload message in its peer’s memory
by specifying a payload length larger than the amount of data in
the HeartbeatRequest message. Because the payload length field
is two bytes, the peer responds with up to 64 KB of memory. The
source of the problem is the assumption that the attacker-specified
length of the attacker-controlled message is correct. This can be
traced to a single line of code:

if (hbtype == TLS_HB_REQUEST) {
...
memcpy(bp, pl, payload);
...

}

memcpy() is the command that copies data. bp is the place it’s
copying it to, pl is where it’s being copied from, and payload is the
length of the data being copied. There’s never any attempt to check
if the amount of data in pl is equal to the value given of payload.

It was only two years later that this vulnerability was found. The
XKCD comic strip in Figure 2 gives a simplified understanding of
how the vulnerability can be exploited to leak sensitive information.

As one may guess, the patch is simple. The developer-provided
patch from April 9, 2014 adds a bounds check that discards the
HeartbeatRequest message if the payload length field exceeds the
length of the payload. The patch looks like:

/* Read type and payload length first */
if (1 + 2 + payload + 16 > s->s3->rrec.length):

return 0;
/* discard */

...
if (hbtype == TLS_HB_REQUEST) {

/* receiver side : */
/* replies with TLS1_HB_RESPONSE */

}
else if (hbtype == TLS_HB_RESPONSE) {

/* sender side */
}

It is perhaps the simplicity of the bug because of which it took
two years to detect it. However, while simple and easy to fix, its
impact should not be understated. Heartbleed not only affected
web servers, but also affected many embedded systems, including
printers, firewalls, VPN endpoints, NAS devices, video conferenc-
ing systems, and security cameras. It also affected Mail Servers,
Tor Project, Bitcoin Clients, Android devices and even Wireless
Networks [12]. It is because of this impact that Heartbleed haunts
the benchmarks suits of modern formal methods tools.

3 DIAGNOSIS: COMBINING STATIC AND
DYNAMIC ANALYSES

A central challenge in verification and bug-finding is to define
exactly what behavior corresponds to a bug. That is, to have a
formal specification for the correctness of a program. For security
vulnerabilities, this process is challenging (as well as expensive) and
the effort is justifiable only when high-integrity security is required.

Figure 2: A summary of the working of the Heartbleed vul-
nerability presented an an XKCD comic strip.

The correctness properties of OpenSSL are not well defined and
hence verification remains a challenge. The papers [9], [14], and
[20] examine why static analysis and dynamic analysis methods
missed out on finding this bug.

The main difficulties in detecting Heartbleed with static analysis
tools were rooted in the way data is stored and referenced, com-
plexity of following the execution path, difficulty of identifying
the specific parts in the storage structure that are misused, and
resistance to taint analysis heuristics due to the difficulty of deter-
mining whether a specific part within a complex storage structure
has become untainted. On the other hand, the custom memory
management used by OpenSSL would prevented dynamic testing



Heartbleed: A Formal Methods Perspective

frameworks to successfully detect a memory corruption or over-
read problem. This — combined with encapsulation of the heartbeat
length field within the payload — made its detection via fuzz testing
infeasible. In the end, Heartbleed was detected by Neel Mehta of
Google’s Security Team using manual code review in March 2014.

One must note that program analysis methods are based on
heuristics and continuously improve. When important vulnerabil-
ities like Heartbleed are missed by these methods, the develop-
ers tend to add certain functions and heuristics to focus on them.
Coverity, for example, developed some new heuristics that to detect
Heartbleed and similar vulnerabilities [2].

We now look at a technique to combine static and dynamic anal-
yses to find Heartbleed and similar vulnerabilities. The Flinder-SCA
tool developed by Balázs Kiss, Nikolai Kosmatov, Dillon Pariente,
and Armand Puccetti puts together four techniques - Abstract In-
terpretation, Taint Analysis, Program Slicing, and Fuzzing to detect
vulnerabilities in source code. We review these four techniques
and discuss the application of Flinder-SCA tool for detecting the
Heartbleed vulnerability as illustrated in their 2015 paper [16].

3.1 Abstract Interpretation
The first step is to detect potential runtime errors using abstract
interpretation.

Abstract interpretation is a framework for automatic and sound
approximation the semantics of the program. It provides an auto-
matic extraction of information about all the possible executions of
program.

The concrete semantics of programs is the set of all possible
executions of the program in all possible execution environments.
Non-trivial properties of this (potentially infinite) set can be hard to
analyse and are often undecidable. However, one can find an over
approximation of this set, called abstract semantics, which may be
easier to work with. If one can show that the over approximation
satisfies the desired properties, then the concrete semantics also
satisfy the properties. It is easy to see that the converse isn’t true,
which makes this technique sound but not complete.

For the Heartbleed vulnerability, we compute the abstract (over-
approximated) domains of possible values for program variables at
each program location. To show the absence of bugs, it is sufficient
to show that for the memcpy call, pointers bp and pl are in the
range of the payload size.

Flinder-SCA is based on the Frama-C framework, which supports
the Value3 plug-in. This plug-in has two functionalities of use here.
The first is Runtime Error Annotation Generation which generates
the assertions of the form:
// assert A1 : mem_access: \valid(bp[0 .. (payload -1)]);
// assert A2 : mem_access: \valid(pl[0 .. (payload -1)]);

The second is the abstract interpretation based value analysis
method which can indicate that the pointers bp and pl may exceed
these ranges and therefore dereferencing them may be dangerous.

3.2 Taint Analysis
As the analysis method is sound but not complete, we are guaran-
teed to generate alarms for all potential runtime errors. However,

3Eva plug-in in the latest versions of Frama-C

we may also generate false alarms due to over-approximations. The
paper first reduces the alarms of interest by focusing on only secu-
rity vulnerabilities by using a version of value propagation analysis
called taint analysis [11]. Taint analysis identifies code variables
and statements concerned with the propagation of potentially cor-
rupted inputs (which may contain information controlled by an
attacker). Such inputs are propagated through pointer aliasing,
copy of memory zones, etc. If the user (or developer) can identify
potentially corrupted inputs and vulnerable functions, value propa-
gation analysis can identify the assertions related to security alarms
and distinguish them from other alarms generated by the abstract
interpretation.

The proposed taint analysis approach is based on static analysis
results computed by Value plug-in. To apply it on the Heartbleed
case, the user specifies the potentially taintable inputs (rrec.data,
the major part of the HeartBeat message sent by the client), and the
potentially vulnerable functions (e.g. memcpy). The tool reports
that the assertions related tomemcpy call handle the taintable input
flow, and the memcpy statement is identified as vulnerable.

3.3 Program Slicing
The third step is to reduce the complexity of program which is
to be analysed using program slicing. Program slicing consists of
computing the set of program instructions, called program slice,
that may influence the program state at some point of interest. This
too is an over approximation. Slicing preserves the behaviors of the
initial program at the selected criterion after removing irrelevant
instructions.

One can use Slicing plug-in of Frama-C to implement this tech-
nique. In the case of Heartbleed, slicing allows us to simplify the
code with respect to the set of assertions produced by the previous
analysis. The original program with the containing 8 defined func-
tions and 51 lines of code is simplified to keeping only 2 functions
and 38 lines in the slice used in the last step.

3.4 Fuzz Testing
The first three methods - Abstract Interpretation, Taint Analysis,
and Program Slicing are implemented by static analysis of the
control flow of the program. At the end of these static analyses we
identify a small part of code which is potentially vulnerable. Now
we wish to find a concrete attack for the program.

Fuzz testing is a technique to provide a system faulty or erroneous
input and monitor its states. Detecting an error error indicates that
the system cannot properly handle the given input, confirming the
existence of a bug in the code. Unlike the previous static analyses
methods, this method is complete but not sound. To implement
fuzz testing, we need to generate syntactically correct inputs that
raise alarms in the program.

The Flinder fuzz testing framework uses white box fuzz testing
which has the following steps:

(1) Generate a list of fuzzing parameters for each variable to be
modified, specifying what kind of values should be generated
for them to look for certain kinds of vulnerabilities.

(2) Compile the annotated code (from the first three analysis
steps) and feed it to the tool.



Aalok Thakkar

(3) Test vectors are generated according to the fuzzing parame-
ters.

(4) Each test vector is sent to the test harness where its values
are used to initialize the variables targeting by the fuzzing
tool at runtime. The test harness detects the alarms raised
and logs them.

(5) Based on the presence of anomalies in the logs the tool
decides whether the vulnerability is confirmed or not.

The white box fuzz testing used in the paper is Flinder [1]. In
the Heartbleed example, the static analysis step reports to Flinder
six potential bugs. Flinder generates 10 test cases for a different-
size Heartbeat message buffer, and 32 test cases each for different
Heartbeat message length and sequence number values. The first
test case where the Heartbeat message length is larger than the
buffer size causes an invalid memory read attempt. Captured by the
test harness, this operation allows Flinder to identify the specific
alarm connected to the test.

4 PREVENTION: THE GOOD HABITS OF
PROGRAM DEVELOPMENT

OpenSSL is open source. Anyone could look at the code, and pre-
sumably hundreds did, but nobody noticed the fairly elementary
coding error. A common misconception is that open source is mag-
ically protected by the community as a large number of eyeballs
go though each line of code. However, this also causes a type of
digital bystander effect: no one actively looks for a bug assuming
that someone else may have already checked the correctness. Heart-
bleed is an example of where this baseless trust in the open source
community can have drastic effects lead us. While the Heartbleed
wiki page specifies how and when the bug was introduced into the
code base, it doesn’t disclose how the OpenSSL code was security
tested, either statically or at runtime. It was only through a manual
reading of the code that Neel Mehta of Google Security identified
the vulnerability in March 2014.

As we have realized, security vulnerabilities are hard to detect
and if left unattended can have a drastic impact. On one extreme,
one can stick to working only with a coherent system of well spec-
ified and verified components. One line of work in this area is
the Deep Specification project which addresses this problem by
showing how to build software that does what it is supposed to
do, no less and no more [7]. This is a very ambitious goal. Given
that OpenSSL did not undergo a thorough human review, nor is
any formal correctness specification available (even after the Heart-
bleed episode), having a fully verified framework is a distant dream,
especially in the open source community. The following are a few
good habits of program development which can help prevent such
security vulnerabilities.

A deeper study of the root cause of the bug reveals how we can
prevent it. A simple first step is to ensure that buffers are handled
safely. The MITRE Corporation, which maintains the Common
Weakness Enumeration (CWE) catalog, ranked buffer handling
errors (including buffer overflows and out-of-bound reads) the most
common type of software vulnerability [5]. One way to prevent
these errors is to train developers to avoid making those errors.
Another way is to move away from languages like C which do not
have any detection mechanisms or countermeasures for improper

buffer restriction (including buffer overwrites and overreads) built
in. A number of other languages (including Java and Python) handle
this by techniques like resizing data structures or by raising an
exception when the buffer is exceeded. One can also use a memory-
safe programming language (like Rust) to prevent buffer overflows.

Another good habit is to write code which is easy to analyse,
both through manual review and by using fully automated formal
methods. D. A. Wheeler discusses them in detail in his essay [20].
Some of them are:

(1) Simplify the code and its API. Security-sensitive code needs
to be simple enough that errors are apparent. Complex code
impede formal methods.

(2) Secure programs shouldn’t involve special, program-specific
allocation or memory caching systems. Mechanism that sub-
divides memory inside the application can thwart analysis.

(3) Using a standard open source software license (such as GPL,
LGPL, MIT/X, Revised BSD, FreeBSD or Apache 2.0) allow
for more code reviews and contributions to code. This can
potentially detect more bugs.

Additionally, Wheeler discusses eight practices that can reduce
the impact of similar security vulnerabilities. Some of them are:

(1) Program and functions that manipulate sensitive and criti-
cal information should overwrite, erase, or destroy this as
quickly as possible (once it is not needed anymore).

(2) A perfect forward security (PFS) encryption algorithms should
be used. PFS algorithms non-deterministically generate new
random public keys for each session, preventing the compro-
mise of a private key that may enable attackers to decrypt
past communications that they have recorded.

(3) Separating critical cryptographic secrets from the rest of the
code can ensure that even if even the rest of the program
is subverted, the attacker cannot directly access secrets like
private keys.

(4) The problems in the SSL/TLS infrastructure such as includ-
ing untrustworthy root certificate authorities, poorly-vetted
certificates, and the certificate revocation process should be
fixed.

(5) Software updates should be easy and required (users of un-
updated Android 4.1.4 are currently vulnerable to Heart-
bleed)

(6) The incentives for attackers should be reduced through pol-
icy, legal, and economic changes.4

But apart from these measures, the most important and effective
way to prevent security threats is to foster better understanding
and awareness for secure software development. Understanding
the operational semantics of programming languages, libraries and
tools used can help avoid most bugs. Formal specification and rig-
orous validation and verification of programs, if made an essential
part of educational and training curriculum for developers, can
ensure that their code meets the intention and has fewer bugs and
vulnerabilities.

4As of now, people can make more money selling information about vulnerabilities to
attackers and they have neither any obligation (legal or otherwise) nor much incentive
to notify the developers or governments.



Heartbleed: A Formal Methods Perspective

5 TREATMENT: AN APPLICATION OF
SYNTHESIS

Bugs are fixed by patching the vulnerable part of the code in the
updated versions of the software. In general, even when the bug
has been detected, it might be difficult to design a patch to repair
the program. Moreover, once the developer designs a patch, they
may have to go through the verification process to ensure that the
patch is free of vulnerabilities.

This challenge provides an opportunity for automated program
repair an emerging of research that allows for automated recti-
fication of software errors and vulnerabilities. Automated repair
techniques try to automatically identify patches for a given bug
which can then be applied with little, or possibly even without,
human intervention. In this section we review a semantic analysis
based program repair tool called Angelix which and scales up to
real world software and is also the first tool to synthesize a patch
for Heartbleed [18].

5.1 Repair as Synthesis
Angelix belongs to the class of constraint-based repair techniques.
These techniques proceed by first 5 constructing a repair constraint
that the patched code should satisfy and then treat the patch code
as a function to be synthesised. A choice of program analysis and
synthesis techniques can be used for both of these steps. Because a
formal specification is often not available for the requirements of
the patch, Angelix relies on a comprehensive test-suit and generates
repair patches which are guaranteed to be correct for the given test
suite. It follows the schema:

for test 𝑡 ∈ test suite 𝑇 :
compute repair constraint 𝜙𝑡

let 𝜙 =
∧
𝑇 𝜙𝑡

synthesize 𝑒 as a solution for 𝜙

In this case, 𝑇 is the test suite used as the correctness criterion.
The constraint for a given test case 𝑡 is computed by the symbolic
execution of the path traversed by test case 𝑡 . Let 𝜋𝑡 be the path
condition of the path traversed by test 𝑡 (that is 𝜋𝑡 holds only for
inputs which traverse the program path as 𝑡 ), let𝜔𝑡 be the symbolic
expression capturing the output variable in the execution of 𝑡 and
𝜉𝑡 be the expected output. Then, the constraint for the test case is
of the form:

𝜙𝑡 ≡ (𝜋𝑡 ∧ 𝜔𝑡 = 𝜉𝑡 )

One can then compute the conjunction 𝜙 and use constraint
solving methods generate the patch which satisfies this constraint.
These constraint specifications can grow with the size of the pro-
gram and solving them can be intractable causing scalability issues.
Angelix uses the technique called Angelic Forest Extraction for a
more efficient inference of value-based specifications which local-
izes the bug to program expressions.

5In practice, program repair methods first transform the program into the abstract
syntax tree or a choice of a standardized syntax and then localize the bug to a particular
function or section of the code. We skip these two steps in this report.

5.2 Angelic Forest Extraction
We first define three concepts.

(1) Given an expression 𝑒 in the program and a failing test case
𝑡 an angelic value is a constant 𝛼 such that replacing 𝑒 by 𝛼
makes the program pass 𝑡 .

(2) For a program 𝑃 , given a set of program expressions 𝐸 and a
test case 𝑡 , the angelic path 𝜋 (𝑡, 𝐸) is a set of triples (𝑒, 𝑣, 𝜎)
such that 𝑒 ∈ 𝐸 is an expression, 𝑣 is an angelic value of 𝑒
and 𝜎 maps every variable visible at location of 𝑒 to their
values such that on replacing each 𝑒 with its corresponding
𝑣 implies 𝑃 passes test 𝑡 and visible variables 𝑥 at location of
𝑒 have value 𝜎 (𝑥).

(3) For a program For a program 𝑃 , given a set of program
expressions 𝐸 and a test case 𝑡 , an angelic forest is a collection
of angelic paths {𝜋1 (𝑡, 𝐸), . . . , 𝜋𝑛 (𝑡, 𝐸)}.

The angelic forest collects enough semantic information to en-
able repair, while being independent of the size of the program.6
The angelic forest is computed by a variant of symbolic execu-
tion. Instead of initiating symbolic execution with symbolic input,
few potentially vulnerable program locations are installed with
uninterpreted symbols7.

The variant of symbolic execution used in the paper is named
controlled symbolic execution (CSE). In this method, symbols are
installed during symbolic execution by replacing the value of each
instance of a suspicious expression with a fresh symbol. Addition-
ally, for each visible variable 𝑥 at the location of a suspicious ex-
pression 𝑒 , we add the constraint that the value of 𝑥 in the context
of 𝑒 should be equal to 𝜎 (𝑥), the concrete or symbolic value of 𝑥
evaluated during symbolic execution. This allows us to maintain
angelic states of the suspicious expressions. Non suspicious expres-
sions are evaluated using conventional symbolic execution. The
full paper details the algorithm and it is implemented on top of
KLEE tool [8].

As sketched in the algorithm in Figure 3, we perform CSE for
every explorable path of the program. CSE produces a pair of a
path condition 𝑝𝑐 and an actual output 𝑂𝑎 of the program. Given
the expected output 𝑂𝑒 available in the test, we find a model of
(𝑝𝑐 ∧ 𝑂𝑎 = 𝑂𝑒 ) using a constraint solver. This model is used to
extract an angelic path, and thereafter grow the angelic forest.

5.3 Patch Code Generation
Once an angelic forest is obtained, it is fed to the repair synthesizer
as a synthesis specification. A synthesized repair, when executed,
follows one of the angelic paths for each test, and therefore all tests
in the suite pass. As tests describe the correctness criterion, this
method gives us a “correct” patch.

The repair synthesizer used is an implementation of component
based repair synthesis (CBRS) [17], which is a generalization of
component-based program synthesis [15] to program repair. It uses

6The caveat is that it also under-approximates, in the sense, it does not capture whole
(possibly infinite) set of values for the suspicious expressions that make the test pass.
The method is sound but not complete, that is the repair obtained by this method
passes all the provided tests but it may miss out on some repairs, due to the under-
approximation of angelic values.
7these may be identified by methods such as statistical fault localization. The choice of
the number of vulnerable locations control the execution paths to be explored during
symbolic execution.



Aalok Thakkar

𝐴 = {}
while (there is an unexplored path ∧¬ timeout) do

\\ Perform CSE
(𝑝𝑐,𝑂𝑎) ← CSE(𝐼 , 𝐸)
𝑅 ← (𝑝𝑐 ∧𝑂𝑎 = 𝑂𝑒 )
if 𝑅 is satisfiable then
𝑀 ← GetModel(𝑅) \\ using constraint solver
𝐴← 𝐴 ∪ ExtractAngelicPath(M)

end if
end while
return 𝐴

Figure 3: Algorithm forAngelic Forest Extraction usingCon-
trolled Symbolic Execution (CSE). Given program 𝑃 , test case
(𝐼 ,𝑂𝑎) and suspicious expressions 𝐸, this algorithm returns
the angelic forest 𝐴.

a technique called Partial Maximum Satisfiability Modulo Theories
(pMaxSMT) The pMaxSMT solver takes two types of SMT clauses
as input - hard constraints and soft constraints, and solves the prob-
lem of finding an assignment of the variables that satisfy all hard
constraints and maximum possible number of the soft constraints.

The constraints for CBRS are formulated in terms of components.
A component is a variable, a constant or a term over components
and operations defined in a given background theory. To repre-
sent the connection between components, the input and output of
components are associated with distinct variables called location
variables. Two components are considered connected if and only
if the location variable of one component has the same value as
the location variable of another component. Then, the following
constraints are imposed:

(1) a range constraint that places all components inputs and
outputs within a legal range,

(2) a consistency constraint that ensures that the output of each
component has a distinct location,

(3) an acyclicity constraint that prohibits cyclic connections, and
(4) a connections constraint that connects location variables with

their corresponding components.

These constraints ensure that a synthesized expression is well-
formed. Additionally, we have the semantics constraint (or the spec-
ification for the synthesis problem from section 5.2). These con-
straints are given to a constraint solver and the repair patch can
compiled from the solution.

However, there can be multiple patches satisfying a given repair
constraint. In those cases, it is assumed that a patch which makes
minimum changes to the original program would be prefered by
the developers as they are are easier to validate and they are less
likely to change the correct behavior of the original program than
more complex patches. Additionally, without this constraint, the
synthesizer would always modify all the suspicious expressions
making the repair impractical. For this, the aforementioned con-
straints are used as hard constraints to the pMaxSAT solver and
the structural constraints that capture the structure of the original
buggy program are used as soft constraints. The solution to the
pMaxSMT with these hard and soft constraints gives us the desired

patch which satisfies all test cases while making minimal changes
to the original program.

5.4 A Patch for Heartbleed
Angelix was applied to OpenSSL for repairing the Heartbleed bug.
The 12 tests from Mike Bland’s regression test suite [4] were used,
along with four additional tests to cover missing corner cases. It
generated the following patch:

if (hbtype == TLS_HB_REQUEST
&& payload + 18 < s->s3->rrec.length) {
/* receiver side : */

/* replies with TLS1_HB_RESPONSE */
}

With this fix, memcpy cannot be invoked if the payload length
(pl) is larger than the length of the payload. Observe that the syn-
thesized patch is composed of the same operators and the developer
provided patch. In both the patches the bounds check is performed
by the added conditional, makes the receiver simply return zero,
instead of replying with a response packet. Hence the two are also
functionally equivalent. The authors neither provide the heartbleed
case study nor the test case suit used by them as a part of the public
version of the Angelix tool.

6 CONCLUSIONS
The popularity of the Heartbleed vulnerability has catalysed the
research in the formal methods community towards security vulner-
abilities. This report surveys and summarizes some of these works.
The works discussed in this report provide novel and practical so-
lutions to the problem of detecting, preventing, and patching bugs
like Heartbleed. An immediate challenge is the osmosis of these
tools and techniques from academicians to software developers. A
few possible directions for future work are as follows:

(1) Combining Static Analysis and Testing: Success of combining
formal methods techniques that provide different kind of
guarantees have worked well in the past, including the work
discussed in this report for detecting Heartbleed. The design
of a general framework to combine static analysis and testing
is an exciting and unexplored area of formal methods.

(2) Formal Specification of Security Properties: Unlike the safety
and liveness properties of reactive programs which have a
rich language for formal specification, and general tools
built for these languages and fragments, much remains to
be explored in the area of formal languages for specifying
security properties. Formal specification often promote and
catalyze the development of verification techniques.

(3) Safe by Design Programming Languages: The core of Heart-
bleed is how C deals with buffers. Developing and using
domain specific programming languages that ensure that
a class of vulnerabilities are absent by design is a possible
future direction.

(4) Automated Program Repair: The technique remains an en-
ticing yet achievable possibility that can improve program
quality as well as the development experience. Challenges
in this domain such as defining and pruning the space of
patches, generalizing overfitting repairs, scalability, and the



Heartbleed: A Formal Methods Perspective

lack of formally defined specification offer many research
opportunities.

Additionally, designing an economic, political, and legal system
of incentives and penalties that promote good software engineering
and bug finding practices remain an open problem. There is also
much scope for transforming software engineering pedagogy by
including the art of developing correct programs, mathematically
thinking about their properties and requirements, and formally
validating and verifying them.

REFERENCES
[1] 2010. Flinder automated security and robustness testing. http://www.flinder.hu/

flinder/index.html
[2] 2014. Coverity Releases Platform Update for OpenSSL ’Heartbleed’ De-

fect. https://news.synopsys.com/2014-04-25-Coverity-Releases-Platform-
Update-for-OpenSSL-Heartbleed-Defect

[3] 2014. The Heartbleed Bug. https://www.heartbleed.com/
[4] 2014-2016. Unit test for TLS heartbeats. https://github.com/xbmc/openssl/blob/

master/ssl/heartbeat_test.c
[5] 2019. Common Weakness Enumeration. https://cwe.mitre.org/
[6] 2019. OpenSSL Vulnerabilities. https://www.openssl.org/news/vulnerabilities.

html
[7] 2020. The Science of Deep Specification. https://deepspec.org/main
[8] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and

Automatic Generation of High-Coverage Tests for Complex Systems Programs.
In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (San Diego, California) (OSDI’08). USENIX Association, USA,
209–224.

[9] M. Carvalho, J. DeMott, R. Ford, and D. A. Wheeler. 2014. Heartbleed 101. IEEE
Security Privacy 12, 4 (2014), 63–67.

[10] National Vulnerability Database. 2014. Vulnerability Summary for CVE-2014-
0160. (2014).

[11] Dorothy E. Denning. 1976. A Lattice Model of Secure Information Flow. Commun.
ACM 19, 5 (May 1976), 236–243. https://doi.org/10.1145/360051.360056

[12] Zakir Durumeric et. al. 2014. The Matter of Heartbleed. Proceedings of the 2014
Conference on Internet Measurement (2014), 475–488.

[13] IPSec.pl. 2014. Why Heartbleed is dangerous? Exploiting CVE-2014-
0160. https://ipsec.pl/ssl-tls/2014/why-heartbleed-dangerous-exploiting-cve-
2014-0160.html

[14] Barton P Miller James A Kupsch. 2014. Why Do Software Assurance Tools
Have Problems Finding Bugs Like Heartbleed? Continuous Software Assurance
Marketplace (2014).

[15] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010. Oracle-
Guided Component-Based Program Synthesis. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume 1 (Cape
Town, South Africa) (ICSE ’10). Association for Computing Machinery, New York,
NY, USA, 215–224. https://doi.org/10.1145/1806799.1806833

[16] Balázs Kiss, Nikolai Kosmatov, Dillon Pariente, and Armand Puccetti. 2015. Com-
bining Static and Dynamic Analyses for Vulnerability Detection: Illustration on
Heartbleed. In Hardware and Software: Verification and Testing, Nir Piterman (Ed.).
Springer International Publishing, Cham, 39–50.

[17] SergeyMechtaev, Jooyong Yi, and Abhik Roychoudhury. 2015. DirectFix: Looking
for Simple Program Repairs. In Proceedings of the 37th International Conference on
Software Engineering - Volume 1 (Florence, Italy) (ICSE ’15). IEEE Press, 448–458.

[18] S. Mechtaev, J. Yi, and A. Roychoudhury. 2016. Angelix: Scalable Multiline Pro-
gram Patch Synthesis via Symbolic Analysis. In 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE). 691–701.

[19] Paul Mutton. 2014. Half a million widely trusted websites vulnerable to Heart-
bleed bug. https://news.netcraft.com/archives/2014/04/08/half-a-million-widely-
trusted-websites-vulnerable-to-heartbleed-bug.html

[20] D. A. Wheeler. [n.d.]. Preventing Heartbleed. https://dwheeler.com/essays/
heartbleed.html

http://www.flinder.hu/flinder/index.html
http://www.flinder.hu/flinder/index.html
https://news.synopsys.com/2014-04-25-Coverity-Releases-Platform-Update-for-OpenSSL-Heartbleed-Defect
https://news.synopsys.com/2014-04-25-Coverity-Releases-Platform-Update-for-OpenSSL-Heartbleed-Defect
https://www.heartbleed.com/
https://github.com/xbmc/openssl/blob/master/ssl/heartbeat_test.c
https://github.com/xbmc/openssl/blob/master/ssl/heartbeat_test.c
https://cwe.mitre.org/
https://www.openssl.org/news/vulnerabilities.html
https://www.openssl.org/news/vulnerabilities.html
https://deepspec.org/main
https://doi.org/10.1145/360051.360056
https://ipsec.pl/ssl-tls/2014/why-heartbleed-dangerous-exploiting-cve-2014-0160.html
https://ipsec.pl/ssl-tls/2014/why-heartbleed-dangerous-exploiting-cve-2014-0160.html
https://doi.org/10.1145/1806799.1806833
https://news.netcraft.com/archives/2014/04/08/half-a-million-widely-trusted-websites-vulnerable-to-heartbleed-bug.html
https://news.netcraft.com/archives/2014/04/08/half-a-million-widely-trusted-websites-vulnerable-to-heartbleed-bug.html
https://dwheeler.com/essays/heartbleed.html
https://dwheeler.com/essays/heartbleed.html

	Abstract
	1 Introduction
	2 Anatomy of the Bug
	3 Diagnosis: Combining Static and Dynamic Analyses
	3.1 Abstract Interpretation
	3.2 Taint Analysis
	3.3 Program Slicing
	3.4 Fuzz Testing

	4 Prevention: The Good Habits of Program Development
	5 Treatment: An Application of Synthesis
	5.1 Repair as Synthesis
	5.2 Angelic Forest Extraction
	5.3 Patch Code Generation
	5.4 A Patch for Heartbleed

	6 Conclusions
	References

