
Complexity of RelationalQuery Synthesis
Aalok Thakkar, Rajeev Alur, Mayur Naik

University of Pennsylvania, Philadelphia, USA

{athakkar,alur,mhnaik}@cis.upenn.edu

1 INTRODUCTION
The synthesis of relational queries from input-output examples has

been studied in the context of inductive logic programming [2, 4, 6–

8], program synthesis [5, 9, 11–14], and neural learning [10]. It is

a challenging problem, and analyzing the computational complex-

ity of the problem for even restricted fragments can significantly

impact the development of synthesis tools.

For instance, several tools use language biases such as mode

declarations, templates, meta-rules, and candidate rules to con-

straint the space of candidate programs [4, 6, 7, 9, 11]. Studying the

hardness of the problem can allow us to determine bounds on the

language biases such that completeness of the search process is not

compromised. Tools that search through an infinite space do not

terminate if the instance of the synthesis problem is unrealizable

[5, 14]. Studying the unrealizability of the problem instance can help

determine when such a search is futile and should be abandoned,

allowing us to give termination guarantees for these tools.

The above mentioned synthesis tools consider different frag-

ments of relational queries. This paper focuses on a fragment that

corresponds to exactly to positive Datalog [1], which supports fea-

tures such as conjunction, disjunction, and recursion, and does not

interpret constants. We define the formal syntax and semantics of

these queries as well as the synthesis problem in Section 2.

We then establish the main contribution of this paper: Relational

Query Synthesis is co-NP complete (Theorem 3.2). The key insight

is the construction of a query that is polynomial in the size of the

input-output examples, such that the problem instance is realizable

if and only if the constructed query is consistent with the examples.

This result forms Section 3.

A natural challenge is that the constructed query may over-

fit the training data and not generalize to unseen examples. In

Section 4, we look at the problem of synthesizing minimal query for

a fragment of relational queries called union of conjunctive queries

and show that the problem is at least in ΣP
3
. We conclude in Section 5

with the implications of these complexity results on synthesis tools

and outline some directions for future work.

2 PROBLEM FORMULATION
We begin with the syntax and semantics of relational queries and

then formulate the Relational Query Synthesis Problem.

2.1 Syntax of Relational Queries
A relational query 𝑄 is a set of horn clauses. To define the syntax

of rules, we first fix a set of input predicates, a set of invented

predicates, and a set of output predicates. Each predicate 𝑅 is asso-

ciated with an arity 𝑘 . A literal, 𝑅(𝑣1, 𝑣2, . . . , 𝑣𝑘), consists of a 𝑘-ary

SYNT’22, August 11, 2022, Haifa, Israel

2022.

predicate 𝑅 with a list of 𝑘 variables. Then, a rule 𝑟 is of the form:

𝑅ℎ (®𝑢ℎ) :- 𝑅1 (®𝑢1), 𝑅2 (®𝑢2), . . . , 𝑅𝑛 (®𝑢𝑛),

where the single literal on the left, 𝑅ℎ (®𝑢ℎ), is the head of 𝑟 and

𝑅1 (®𝑢1), 𝑅2 (®𝑢2), . . . , 𝑅𝑛 (®𝑢𝑛), is called the body of 𝑟 . The literals in

the body can have input predicates, invented predicates, or output

predicates, while the head of the rules must have either invented

predicates or output predicates. A variable that occurs in the head

must appear at least once in the body to bound the variables. The

size of a rule is defined as the number of literals in its body. |𝑃 |, the
size of a query 𝑃 , is defined as the sum of the size of rules in its

body.

A fragment of these queries called union of conjunctive queries

(UCQ) is of interest in Section 4. A UCQ consists of rules where

the body of the rule comprises only of input predicates. UCQ is

equivalent to select-project-join queries in relational algebra [3].

2.2 Semantics of Relational Queries
The semantics of a relational query may be specified in multiple

equivalent ways; see [1] for an overview. In this paper, we will

formalize their semantics using rule instantiations and derivation

trees. We first fix a data domain 𝐷 , whose elements we will call

constants. A tuple, 𝑅(𝑐1, 𝑐2, . . . , 𝑐𝑘), consists of a 𝑘-ary relation name

𝑅 with a list of constants, 𝑐1, . . . , 𝑐𝑘 .

Given a map 𝑣 from variables to the data domain 𝐷 , we can

instantiate a rule by consistently replacing its variables 𝑥 with

constants 𝑣 (𝑥):

𝑅ℎ (𝑣 (®𝑢ℎ)) ⇐= 𝑅1 (𝑣 (®𝑢1)), 𝑅2 (𝑣 (®𝑢2)), . . . , 𝑅𝑛 (𝑣 (®𝑢𝑛)) .

Given a query 𝑃 and a valuation of the input relations 𝐼 , a derivation

tree of a tuple 𝑡 is a labelled rooted tree where: (a) each node of

the tree is labeled by a tuple, (b) each leaf is labeled by a tuple in

𝐼 ; (c) the root node is labeled by 𝑡 ; and (d) for each internal node

labeled 𝛼 , there exists an instantiation 𝛼 ⇐= 𝛽1, . . . , 𝛽𝑛 of a rule

in 𝑃 such that the children of the node are respectively labelled

𝛽1, . . . , 𝛽𝑛 . We say that a query 𝑃 derives 𝑡 using 𝐼 if there exists a

derivation tree for 𝑡 .

2.3 Relational Query Synthesis Problem
Our ultimate goal is to synthesize a recursive relational query which

is consistent with given input-output examples. Given (𝐼 ,𝑂+,𝑂−),
where 𝐼 is a set of input tuples and 𝑂+

and 𝑂−
are a partition of

the output tuples as positive and negative examples respectively,

a query 𝑃 is said to be consistent with (𝐼 ,𝑂+,𝑂−) if 𝑂+ ⊆ ⟦𝑃⟧(𝐼)
and ⟦𝑃⟧(𝐼) ∩𝑂− = ∅.

Problem 2.1 (Query Synthesis). Given a set of input-output exam-

ples 𝐸 = (𝐼 ,𝑂+,𝑂−) find a relational query 𝑃 such that 𝑃 is consistent

with 𝐸.

1

SYNT’22, August 11, 2022, Haifa, Israel Thakkar, Alur, and Naik

3 DECIDABILITY AND COMPLEXITY
We will now show that checking whether a synthesis problem

instance is solvable is co-NP complete. One of the main ingredients

of this proof will be the following construction:

Let the data domain 𝐷 = {𝑐1, 𝑐2, . . . , 𝑐𝑛}, and the input tuples

𝐼 = {𝑅1 (®𝑐1), 𝑅2 (®𝑐2), . . . , 𝑅𝑛 (®𝑐𝑛)}. Then, for 𝑡 = 𝑅(®𝑐), we then define

the rule 𝑟 (𝑡) as follows:
𝑟 (𝑡) :𝑅(®𝑣):- 𝑅1 (®𝑣1), 𝑅2 (®𝑣2), . . . , 𝑅𝑛 (®𝑣𝑛) .

where the head 𝑅(®𝑣) and the body literals 𝑅𝑖 (®𝑣𝑖) are obtained by

by consistently replacing the constants in the output tuple 𝑅(®𝑐)
and input tuples 𝑅𝑖 (®𝑐𝑖) with fresh variables 𝑣𝑐 . The idea is that the

body of this rule captures all patterns which exist among the input

tuples. The rule 𝑟 (𝑡) is therefore the strongest query in this data

which also produces 𝑡 . This gives us the following lemma:

Lemma 3.1. Given a problem instance 𝐸 = (𝐼 ,𝑂+,𝑂−), let 𝑄𝑂+ =

{𝑟 (𝑡) : 𝑡 ∈ 𝑂+}. The problem instance admits a solution if and only

if 𝑄+
𝑂
is consistent with 𝐸.

Proof. One direction of the claim is immediate: if 𝑄𝑂+ is con-

sistent with 𝐸, then the problem admits a solution.

In the reverse direction, suppose that𝑄𝑂+ is not consistent with

𝐸 but there exists a query 𝑃 consistent with 𝐸. Observe that for

each 𝑡 ∈ 𝑂+
, the rule 𝑟 (𝑡) can produce it by picking an appropriate

instantiation with which it was constructed. Hence, there exists a

tuple 𝑡− ∈ 𝑂−
that is produced by 𝑄𝑂+ . We will show that 𝑃 also

produces 𝑡− and establish a contradiction.

Since 𝑃 is consistent with 𝐸, 𝑡 ∈ ⟦𝑃⟧(𝐼). Let 𝜏 be the derivation
tree which produces 𝑡 . Pick the variable valuation 𝛾 : 𝑋 → 𝐷 which

causes 𝑟 (𝑡) to produce the tuple 𝑡−. Let 𝑣 : 𝐷 → 𝑋 be the map

that was used to construct 𝑟 (𝑡). Apply the constant renaming map

𝑓 = 𝛾 ◦ 𝑣 : 𝐷 → 𝐷 to every node of the derivation tree 𝜏 to produce

the renamed tree 𝑓 (𝜏). Observe that 𝑓 (𝜏) is still a well-formed

derivation tree of the query 𝑃 , and that 𝑓 (𝑡) = 𝑡−. It follows that
the query 𝑃 also produces 𝑡− as an output tuple, contradicting our

assumption that 𝑃 was consistent with 𝐸. □

We now establish our main complexity result, which follows

from Claims 3.3, 3.4, and 3.5.

Theorem 3.2. Determining whether an instance of the relational

query synthesis problem admits a solution is co-NP complete.

We devote the rest of this section to the proof of this theorem.

Claim 3.3. The problem of determining whether 𝑄+
𝑂
is consistent

with the input-output example 𝐸 = (𝐼 ,𝑂+,𝑂−) is in co-NP.

Proof. By construction, 𝑂+ ⊆ ⟦𝑄𝑂+⟧(𝐼) and it only remains to

check that 𝑂− ∩ ⟦𝑄𝑂+⟧(𝐼) = ∅. A rule 𝑟 ∈ 𝑄𝑂+ and map 𝑣 from

variables to constants serve as a certificate of 𝑂− ∩ ⟦𝑄+
𝑂
⟧(𝐼) ≠ ∅.

The certificate can be verified by confirming that the tuple derived

by instantiating 𝑟 with 𝑣 is in 𝑂−
. It follows that checking whether

𝑄𝐼 ↦→𝑂+ is consistent with 𝐸 is in co-NP. □

To show co-NP hardness, we reduce the problem of checking

whether an undirected graph 𝐺 = (𝑉 , 𝐸) has a clique of size 𝑘 to

that of determining whether an instance of the synthesis problem is

unsolvable. Without loss of generality, assume that𝐺 does not have

self-loops. Consider a set of 𝑘 constants 𝑉𝑘 = {𝑣1, 𝑣2, . . . , 𝑣𝑘 } dis-
joint from 𝑉 . Then, consider the instance of the synthesis problem

(𝐼 ,𝑂+,𝑂−), where:
𝐼 = {edge(𝑢, 𝑣) | (𝑢, 𝑣) ∈ 𝐸}

∪ {edge(𝑣𝑖 , 𝑣 𝑗) | 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉𝑘 , 𝑣𝑖 ≠ 𝑣 𝑗 },
𝑂+ = {clique(𝑣) | 𝑣 ∈ 𝑉𝑘 }, and
𝑂− = {clique(𝑢) | 𝑢 ∈ 𝑉 }.

Claim 3.4. If 𝐺 does not have a clique of size 𝑘 , then the given

instance is realizable.

Proof. Consider a query 𝑄 with only one rule:

clique(𝑥1) :- edge(𝑥1, 𝑥2), . . . ,
edge(𝑥𝑖 , 𝑥 𝑗), . . . edge(𝑥𝑘 , 𝑥𝑘−1).

Where the premise consists of edge(𝑥𝑖 , 𝑥 𝑗) for 𝑖 ≠ 𝑗 . If 𝐺 does

not have a clique, then we claim that ⟦𝑃⟧(𝐼) = 𝑂+
. It is clear

that 𝑂+ ⊆ ⟦𝑄⟧(𝐼). For sake of contradiction, let clique(𝑢) ∈
𝑂− ∩ ⟦𝑄⟧(𝐼). Then, there is a map 𝑣 : {𝑥1, . . . , 𝑥𝑘 } → 𝑉 ∪𝑉𝑘 such

that instantiating the rule 𝑟 with 𝑣 derives clique(𝑢) for some

𝑢 ∈ 𝑉 . 𝐼 must contain a tuple edge(𝑣 (𝑥𝑖), 𝑣 (𝑥 𝑗)) ∈ 𝐼 for each 𝑖 ≠ 𝑗 .

By construction of 𝐼 , if edge(𝑥,𝑦) ∈ 𝐼 , then 𝑥 ≠ 𝑦, so each 𝑣 (𝑥𝑖) is
distinct. Also, we know that 𝑢 = 𝑣 (𝑥1) ∈ 𝑉 and edge(𝑢, 𝑣 (𝑥𝑖)) ∈
𝐼 for 2 ≤ 𝑖 ≤ 𝑘 , hence, 𝑣 (𝑥𝑖) ∈ 𝑉 . Let 𝑢𝑘 = 𝑣 (𝑥𝑘). We have

distinct vertices 𝑢1, . . . , 𝑢𝑘 each in 𝑉 such that there is an edge

between them. Then, these vertices form a 𝑘-clique, contradicting

the assumption. □

Claim 3.5. If 𝐺 has a clique of size 𝑘 , then the given instance is

unrealizable.

Proof. Let the vertices 𝑢1, . . . , 𝑢𝑘 form a clique in 𝐺 . Consider

the map 𝜋 : 𝑉 ∪𝑉𝑘 → 𝑉 where 𝜋 (𝑢) = 𝑢 for 𝑢 ∈ 𝑉 and 𝜋 (𝑣𝑖) = 𝑢𝑖
for 𝑣𝑖 ∈ 𝑉𝑘 . For sake of contradiction, let 𝑃 be a query consistent

with the input-output example, and hence, clique(𝑣1) ∈ ⟦𝑃⟧(𝐼).
The derivation tree for clique(𝑢1) in 𝑃 can be constructed by

replacing each 𝑣 by 𝜋 (𝑣) in the derivation tree of clique(𝑣1) in 𝑃 .
Hence, 𝑢1 ∈ ⟦𝑃⟧(𝐼) ∩𝑂−

, contradicting the assumption that 𝑃 is

consistent with the input-output example. □

Lemma 3.1, and Claims 3.3, 3.4, 3.5 allow us to conclude the

Relational Query Synthesis Problem is co-NP complete. Moreover,

the 𝑄𝑂+ construction synthesizes a polynomial sized relational

query using the input-output examples.

4 MINIMAL QUERY SYNTHESIS PROBLEM
In this section, we address the complexity of synthesizing the small-

est query from input-output examples for the case of UCQs as

defined in Section 2.1.

While the query 𝑄𝑂+ , as constructed in Lemma 3.1 solves Prob-

lem 2.1, it may overfit the input-output examples. Therefore, several

synthesis tools add an optimization goal of synthesizing minimal

queries that are consistent with the input-output examples [2, 5, 13].

For this section, we limit our analysis to union of conjunctive

queries (UCQs) that form the non-recursive fragment of relational

queries and use the definition of size as defined in Section 2.1. In

Section 5, we discuss expanding the targeted fragment as well as

changing the definition of size.

2

Complexity of Relational Query Synthesis SYNT’22, August 11, 2022, Haifa, Israel

Problem 4.1 (Minimal Query Synthesis). Given input-output ex-

amples 𝐸 = (𝐼 ,𝑂+,𝑂−), find a conjunctive query 𝑄 such that 𝑄 is

consistent with 𝐸 has the smallest size among all such conjunctive

queries.

The rest of this section is devoted to the complexity result:

Lemma 4.2. Given input-output examples (𝐼 ,𝑂+,𝑂−) and an in-

teger 𝑘 , determining if there exist a UCQ 𝑄 of size at most 𝑘 that is

consistent with (𝐼 ,𝑂+,𝑂−) is in ΣP
3
.

Proof. Following the proof of Claim 3.3, we can construct a NP

oracle that given query 𝑄 and a tuple 𝑜 , determines if 𝑜 ∈ ⟦𝑄⟧(𝐼).
This gives us:

(1) A NP oracle A1 to check if 𝑂+ ⊆ ⟦𝑄⟧(𝐼), and
(2) A co-NP oracle A2 to check if ⟦𝑃⟧(𝐼) ∩𝑂− = ∅.
Combining the two oracles, we have a Δ𝑃

2
oracleA that checks if

a given query𝑄 is consistent with input-output examples. Consider

a query 𝑄 of size at most 𝑘 as a certificate. As it can be verified by

oracle A, we conclude that the decision problem is in NP
Δ𝑃
2 , and

therefore in ΣP
3
. □

5 CONCLUSIONS
The central concept behind this work is simple: studying the com-

putational complexity of the synthesis task allows us to create more

efficient tools and give guarantees about them. We conclude with

an outline of how Theorem 3.2 impacts current tools, and then

identify some directions for future work.

5.1 Completeness Guarantees
Given an instance of the synthesis problem (𝐼 ,𝑂+,𝑂−), the con-
struction in the proof of Lemma 3.1 gives a bound for the size of

the desired query:

(1) There are at most |𝑂+ | rules, and
(2) The size of each rule is at most |𝐼 |.
Therefore, if there exists a query, there exists a query of size

less than or equal to 𝐾 = |𝑂+ × 𝐼 |. This bound allows us to give

completeness guarantees for several existing tools.

For instance, ILP based tools such as ILASP [4] use mode declara-

tions. The mode declarations specify the bounds on the number size

of each rule, the number of variables that can be used, as well as the

number of times a predicate can occur in such rules. Using these

maximal mode declarations recovered from the construction in the

proof of Lemma 3.1, allows us to give a completeness guarantee:

Theorem 5.1. ILASP can synthesize a relational query consistent

with given input-output examples using maximal mode declarations

if and only if such a query exists.

Similarly, candidate rules, metarules, and other forms of tem-

plates used by state-of-the-art tools can be further refined to give

completeness results [6, 7, 9, 11].

Additionally, the bound on the size of the query gives a threshold

for terminating enumerative tools such as GenSynth and Scythe

[5, 14]. When all queries up to the bound 𝐾 (or sketches with a

corresponding bound) have been enumerated, one can abandon

the search and conclude that the instance is unsolvable. We get a

completeness guarantee analogous to Thereom 5.1 for enumerative

tools.

While EGS has a completeness guarantee for UCQs, our result

strengthens it to include all relational queries (including recursive

queries, as defined in Section 2.1):

Theorem 5.2. EGS synthesizes a relational query consistent with

a given set of input-output examples if and only if such a (potentially

recursive) query exists.

5.2 Future Work
There are three directions for future work. Firstly, we described

the complexity of synthesizing relational queries in a restricted

fragment (positive Datalog). The completeness guarantees in this

section are therefore limited, while many tools support queries with

more features (including ILASP and Scythe). A direction of future

work is to study the complexity of synthesizing queries with the

said features (such as Answer Sets, SQL, and Prolog). A preliminary

step is to incrementally study the extensions of positive Datalog

to include features such as negation, aggregation, and constant

comparison.

Secondly, different tools use varied language biasing mecha-

nisms. Establishing completeness guarantees for them analogous to

Theorem 5.1 requires identifying how these language biases can be

recovered from the construction in Lemma 3.1 or analogous results.

And finally, it remains to determine if a stronger claim can be

made for Lemma 4.2, as well as if the hardness of the problem can be

established. Additionally, this result is sensitive to the definition of

the size of the query. For instance, if the size of the UCQ is defined

as the length of the shortest rule, the problem can be solved in ΣP
2
.

This invites a study of all three, the computational complexity of the

minimal query synthesis problem,minimal query synthesis problem

for different fragments of relational queries (to support recursion

and other features), and formulating an appropriate definition of

the size of a query.

The results in this paper are only an initial exploration of the com-

plexity of query synthesis problems. Given the rich variety of fea-

tures for relational queries, as well as the diverse target languages

for programming-by-examples in general, the study of complexity

and decidability of synthesis tasks promises to be a particularly

fertile topic.

Acknowledgement: The authors were supported, in part, by

grants from the AFRL (FA8750-20-2-0501), ONR (N00014-18-1-2021),

and the NSF (1836822). Any opinions, findings, conclusions, or

recommendations expressed are those of the authors and do not

necessarily reflect the views of the Air Force Research Laboratory,

the Office of Naval Research, or the National Science Foundation.

REFERENCES
[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases.

Addison-Wesley.

[2] Andrew Cropper, Sebastijan Dumancic, and Stephen H.Muggleton. 2020. Turning

30: New Ideas in Inductive Logic Programming. In Proceedings of the International

Joint Conference on Artificial Intelligence (IJCAI).

[3] C.J. Date. 2003. An Introduction to Database Systems (8 ed.). Addison-Wesley

Longman Publishing Co., Inc., USA.

[4] Mark Law, Alessandra Russo, and Krysia Broda. 2020. The ILASP system for

Inductive Learning of Answer Set Programs. CoRR abs/2005.00904 (2020).

3

SYNT’22, August 11, 2022, Haifa, Israel Thakkar, Alur, and Naik

[5] Jonathan Mendelson, Aaditya Naik, Mukund Raghothaman, and Mayur Naik.

2021. GenSynth: Synthesizing Datalog Programs without Language Bias. In

Proceedings of the Conference on Artificial Intelligence (AAAI).

[6] Stephen Muggleton. 1995. Inverse Entailment and Progol. New Generation

Computing 13, 3 (Dec. 1995), 245–286. https://doi.org/10.1007/BF03037227

[7] Stephen Muggleton, Dianhuan Lin, and Alireza Tamaddoni-Nezhad. 2015. Meta-

interpretive Learning of Higher-order Dyadic Datalog: Predicate Invention Re-

visited. Machine Learning 100, 1 (01 July 2015), 49–73. https://doi.org/10.1007/

s10994-014-5471-y

[8] StephenMuggleton, Luc De Raedt, David Poole, Ivan Bratko, Peter Flach, Katsumi

Inoue, and Ashwin Srinivasan. 2011. ILP turns 20. 86, 1 (Sept. 2011), 3–23.

https://doi.org/10.1007/s10994-011-5259-2

[9] Mukund Raghothaman, Jonathan Mendelson, David Zhao, Mayur Naik, and

Bernhard Scholz. 2020. Provenance-guided synthesis of Datalog programs. In

Proceedings of the ACM Symposium on Principles of Programming Languages

(POPL).

[10] Tim Rocktäschel and Sebastian Riedel. 2017. End-to-end Differentiable Proving.

In Advances in Neural Information Processing Systems (NeurIPS).

[11] Xujie Si, Woosuk Lee, Richard Zhang, Aws Albarghouthi, Paraschos Koutris, and

Mayur Naik. 2018. Syntax-guided Synthesis of Datalog Programs. In Proceedings

of the ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering (ESEC/FSE). https://doi.

org/10.1145/3236024.3236034

[12] Xujie Si, Mukund Raghothaman, KihongHeo, andMayur Naik. 2019. Synthesizing

Datalog programs using numerical relaxation. In Proceedings of the International

Joint Conference on Artificial Intelligence (IJCAI).

[13] Aalok Thakkar, Aaditya Naik, Nathaniel Sands, Rajeev Alur, Mayur Naik, and

Mukund Raghothaman. 2021. Example-guided synthesis of relational queries.

In Proceedings of the ACM Conference on Programming Language Design and

Implementation (PLDI).

[14] Chenglong Wang, Alvin Cheung, and Rastislav Bodik. 2017. Synthesizing highly

expressive SQL queries from input-output examples. In Proceedings of the Confer-

ence on Programming Language Design and Implementation (PLDI).

4

https://doi.org/10.1007/BF03037227
https://doi.org/10.1007/s10994-014-5471-y
https://doi.org/10.1007/s10994-014-5471-y
https://doi.org/10.1007/s10994-011-5259-2
https://doi.org/10.1145/3236024.3236034
https://doi.org/10.1145/3236024.3236034

	1 Introduction
	2 Problem Formulation
	2.1 Syntax of Relational Queries
	2.2 Semantics of Relational Queries
	2.3 Relational Query Synthesis Problem

	3 Decidability and Complexity
	4 Minimal Query Synthesis Problem
	5 Conclusions
	5.1 Completeness Guarantees
	5.2 Future Work

	References

